Andersen Lab Recipes

M9 Buffer

1. Mix the following:

Reagent	Amount Needed to make: 1L of 1X stock	Amount Needed to make: 3L of 1X stock
KH ₂ PO ₄	3 g	9 g
Na ₂ HPO ₄	6 g	18 g
NaCl	5 g	15 g
dH ₂ O	up to 1L	up to 3 L

- 1. To make 3 L of 1X Stock
 - First measure all reagents into 2.5 L distilled water in a 4 L beaker and fully dissolve. Then bring volume to total of 3 L in a graduated cylinder.
 - Filter Sterilize using the vacuum filtration systems into 500 mL bottles (6 bottles total) (Thermo- 0.45 uM, Rapid Flow PES)
- 2. Autoclave on liquid cycle, 30 minutes (Make sure to loosen the cap only a little, to maintain final volume).
- 3. When the M9 is cool, add: MgSO₄, 1 M, filter sterilized: 0.5 ml for 500 mL

Potassium Phosphate Buffer, 1M pH6

1. Mix the following:

Reagent	Amount Needed
KH ₂ PO ₄	136.1 g
КОН	17.99 g
dH₂O	up to 1 L

2. Filter Sterilize into a 1L Sterile Bottle using the vacuum filtration systems (EMD-0.22 uM, Express-Plus). Store in 1 L aliquots.

S Basal

1. Mix the following:

Reagent	Amount Needed
NaCl, 5 M	20 ml
Potassium Phosphate Buffer, 1 M pH 6	50 ml
Cholesterol, 5 mg/ml in ethanol	1 ml
dH₂O	930 mL

- 2. Autoclave on liquid cycle for 30 minutes.
 - Note that the solution will be cloudy

S Medium

- 1. Make each component below according to the recipe.
- 2. Using sterile technique, mix the following:

Reagent	Amount Needed
5 M NaCl	40
Potassium Citrate, 1 M pH 6	20 ml
Trace Metals Solution	20 ml
CaCl ₂ , 1 M	6 ml
MgSO ₄ , 1 M	6 ml
Phosphate Buffer, 1 M pH6	20 ml
dH ₂ O	1886

- 3. Filter sterilize using a 0.22 µm filter in 499.5 ml aliquots.
- 4. Using good sterile technique, add 0.5 ml of cholesterol (5 mg/ml on EtOH) to each aliquot.

Trace Metals Solution

1. Dissolve 3.06 g Trace Metals Mix (US Biological, cat # N1010) into 1 L of dH₂O.

- Stir with heat until completely solubilized.
- 2. Aliquot 100 ml into amber PDPE bottles.
- 3. Autoclave on liquid cycle for 30 minutes, using the large autoclave on the left.
 - Be careful to just place the cap on top of the bottle
 - If you screw the cap, the bottle could deform during autoclaving

Potassium Citrate, 1 M pH 6

1. Mix the following:

Reagent	Amount Needed
Citric Acid Monohydrate	20 g
Tri-potassium Citrate Monohydrate	293.5 g
dH ₂ O	up to 1 L

2. Autoclave on liquid cycle for 30 minutes.

Freezing Solution

1. Mix the following — dissolve the Glycerol in water first, then mix in other reagents

Reagent	Amount Needed
Potassium phosphate buffer, 1 M pH 6	100 ml
NaCl, 5 M	40 ml
Glycerol, 100%	600 ml
dH ₂ O	up to 2 L

- 2. Divide into 200 ml aliquots in 250 mL glass square bottles.
- 3. Autoclave on liquid cycle for 30 minutes.
- 4. **IMMEDIATELY BEFORE USE:** Add MgSO₄ to a final concentration of 0.3 mM (e.g. for 200 ml of freezing solution, add 60 μ l of 1 M MgSO₄).

Bleach Solution

Reagent	Amount Needed for 10 ml	Amount Needed for 200 ml
NaOCl (from Fisher, cat #SS290-1)	2 ml	40 ml
NaOH Pellets*	0.2 g	4 g
dH ₂ O	up to 10 ml	up to 200 ml

^{*} NOTE: If using a 10 M NaOH solution, add 0.5 ml to 10 ml Total Bleach Solution.

• Store at 4°C

Horvitz Super Broth

1. Mix the following in a 6 L Erlenmeyer flask:

Reagent	Amount Needed
Tryptone	30 g
yeast extract	60 g
Glycerol, 100%	10 ml
dH ₂ O	2.25 L

- Be careful to be accurate when measuring the glycerol
- Add glycerol after the water.
- Pipette broth solution up and down 2-3 times to remove glycerol from the inside of the pipetter.
- 2. Autoclave on liquid cycle for 30 minutes.
- 3. Once the media is cool, add 250 ml of sterile **super broth** potassium phosphate buffer (0.17M KH_2PO_4 , 0.72M K_2HPO_4) for a total of 2.5 L.

5X Horvitz Super Broth

1. Mix the following:

Reagent	Amount Needed
Tryptone	30 g
yeast extract	60 g
Glycerol, 100%	10 ml
dH ₂ O	up to 450 ml

- Be careful to be accurate when measuring the gylcerol
- Add glycerol after the water.
- Pipette broth solution up and down 2-3 times to remove glycerol from the inside of the pipetter.
- 2. Autoclave on liquid cycle for 30 minutes.
- 3. Once the media is cool, add 50 ml of sterile **5X super broth** potassium phosphate buffer (0.85M KH₂PO₄, 3.56M K₂HPO₄).

Super Broth Potassium Phosphate Buffer

1. Mix the following:

Reagent	Amount Needed
KH ₂ PO ₄	46.2 g
K ₂ HPO ₄	250.8 g
dH ₂ O	up to 2 L

- 2. Divide into 250 ml aliquots.
- 3. Filter Sterilize into a 500 mL Sterile Bottle using the vacuum filtration systems (EMD- **0.22 uM**, **Express-Plus**). Store in 500 ml aliquots.

5X Super Broth Potassium Phosphate Buffer

1. Mix the following:

Reagent	Amount Needed
KH ₂ PO ₄	5.78 g
K ₂ HPO ₄	31.35 g
dH ₂ O	up to 50 ml

2. Autoclave on liquid cycle for 30 minutes.

1._Mix the following:

Reagent	Amount Needed
Tris Base	242 g
EDTA, 0.5 M pH 8	100 ml
Glacial Acetic Acid	57.1 ml
dH ₂ O	up to 1 L

- Be very careful when pipetting the glacial acetic acid, as it is very caustic.
- Use a GLASS pipette

EDTA, 0.5 M

1. Mix the following:

Reagent	Amount Needed
EDTA, disodium salt	93 g
NaOH pellets	~10 g
dH ₂ O	up to 500 mL

- 2. Add EDTA powder to ~450 ml of dH₂O with stirring and monitoring the pH.
- 3. Slowly add the NaOH pellets until the solution is pH 8.
- 4. Bring the volume up to 500 ml.
- 5. Filter sterilize.

LB Miller Broth

1. Mix the following:

Reagent	Amount Needed
Tryptone	10 g
yeast extract	5 g
NaCl	10 g
dH ₂ O	up to 1 L

- 2. Autoclave on liquid cycle for 30 minutes.
- 3. Once the media is cooled after autoclaving, you can add antibiotics (if needed):

Antibiotic	Stock	Dilution	Final Concentration	Volume Added to 500 ml of Media
Ampicillin	100 mg/ml	1:1000	100 μg/ml	0.5 ml
Kanamycin	50 mg/ml	1:1000	50 μg/ml	0.5 ml
Chloramphenicol Store media with	50 mg/ml	1:3333 4°C	15 μg/ml	0.15 ml

LB Miller Agar

1. Mix the following:

Reagent	Amount Needed
Tryptone	10 g
yeast extract	5 g
NaCl	10 g
Agar	15 g
dH ₂ O	up to 1 L

- 2. Autoclave on liquid cycle for 30 minutes.
- 3. Once the media is out of the autoclave, place it in a 55°C oven for 1 hour.
- 4. After the media is cooled down to 55°C, you can either pour right away, or add the antibiotic of your choice:

Antibiotic	Stock	Dilution	Final Concentration	Vol Added to 500 ml of Media
Ampicillin	100 mg/ml	1:1000	100 μg/ml	0.5 ml
Kanamycin	50 mg/ml	1:1000	50 μg/ml	0.5 ml
Chloramphenicol	50 mg/ml	1:3333	15 μg/ml	0.15 ml

5. Make sure to mix well after adding the antibiotic and then pour.

Sodium Acetate (NaOAc), 3M, pH 5.2

1. Mix the following:

Reagent	Amount Needed
Sodium Acetate Trihydrate	204 g
dH ₂ O	400 ml

- 2. pH the solution with glacial acetic acid to pH 5.2
- 3. Adjust final volume to 500 ml.
- 4. Store in glass bottles in 100 ml aliquots.

MgSO₄, 1M Solution

- 1. To make 500 ml, completely dissolve 123.24 g of MgSO₄ heptahydrate (FW = 246.48) in 450 ml distilled water (from the carboy). Transfer to a graduated cylinder and bring up to final volume.
- 2. Filter sterilize into a 500 ml Filter Bottle using the disposable vacuum filtration systems (Thermo-Fisher Nalgene **0.22 uM, Rapid Flow Filter**).

CaCl₂, 1M Solution

- 1. To make 500 ml, completely dissolve 55.49 g of $CaCl_2$ anhydrous (FW = 110.98) in 450 ml distilled water (from the carboy). Transfer to a graduated cylinder and bring up to final volume.
- 2. Filter sterilize into a 500 ml Filter Bottle using the disposable vacuum filtration systems (Thermo-Fisher Nalgene **0.22 uM**, **Rapid Flow Filter**).

1. To make 500 ml, completely dissolve 101.65 g of $MgCl_2$ hexahydrate (FW = 203.3) in 450 ml distilled water (from the carboy). Transfer to a graduated cylinder and bring up to final volume.

2. Filter sterilize into a 500 ml Filter Bottle using the disposable vacuum filtration systems (Thermo-Fisher Nalgene - **0.22 uM**, **Rapid Flow Filter**).

KCI, 1M Solution

- 1. To make 500 ml, completely dissolve 37.28 g of KCl (FW = 74.55) in 450 ml distilled water (from the carboy). Transfer to a graduated cylinder and bring up to final volume.
- 2. Filter sterilize into a 500 ml Filter Bottle using the disposable vacuum filtration systems (Thermo-Fisher Nalgene **0.22 uM**, **Rapid Flow Filter**).

NaCl, 5M Solution

1. To make 1 L, completely dissolve 58.44 g of NaCl (FW = 58.44) in 900 ml distilled water (from the carboy). Transfer to a graduated cylinder and bring up to final volume. This is stored without sterilizing.

Orange G 6X Gel Loading Dye

1. Make a 6X stock (0.9%) by adding the Orange G dye to the glycerol in a 15 ml conical tube and shaking to mix completely.

Reagent	Amount Needed
Orange G dye	45 mg
30% Glycerol (filter sterilized)	10.0 ml

2. Aliquot 1 ml each into pre-labeled 1.7 ml tubes and store at room temperature in the labeled cardboard box on bench #9 (shelf A8). Tubes can also be stored at -20°C.

TE buffer

1. Mix the following:

Reagent	Amount Needed to make 500 ml	Amount needed to make 200 ml
1M Tris (pH 8)	5 ml	2ml
0.5M EDTA (pH 8)	1 ml	0.4 ml
dH ₂ O	494 ml	197.6 ml

2. Aliquot 10 ml each into 15 ml conical tubes.

Tris, 1M, pH 8

Reagent	Amount needed
Tris Base	121.14 g
HCI	~ 80 - 85 ml
dH ₂ O	up to 1L

- 1. Dissolve Tris Base in 800 ml dH₂O, while monitoring pH.
- 2. Slowly add HCl until the solution is pH 8
- 3. Bring final volume to 1L
- 4. Aliquot 200 ml into 250 ml bottles
- 5. Autoclave on liquid cycle, 30 minutes