A C. elegans large-scale genome-wide association study reveals hundreds of quantitative trait loci underlying responses to biomedically relevant therapeutics

Stefan Zdraljevic ${ }^{1,2}$, Sam K. Rosenberg1, Robyn E. Tanny1, Tyler C. Shimko1, and Erik C. Andersen1,2
1 Molecular Biosciences, Northwestern University, Evanston, IL, United States,
2 Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States

NORTHWESTERN UNIVERSITY

Abstract

Individuals in a population vary in a wide range of traits, including susceptibilities to diseases and ponses to therapeutics. Identifyying the genetic determinants of such traits remains difficult in huma polygenic nature of many traits. Caenorhabditis elegans provides a powerful model to probe the genetic determinants of these traits. Importantly, the molecular and genetic toolkits available in C. elegans allow us to characterize how genetic variation alters molecular mechanisms. We have optimized a high throughput and high-accuracy phenotyping pipeline capable of quantifying various fitness traits of 96 genetically distinct strains exposed to 24 different environmental conditions in one week. Altogether, we exposed 96 wild isolates and 359 recombinant inbred lines to 70 different environmental perturbations,
including chemotherapeutics, neuroactive compounds, anthelmintics, heavy metals, pesticides, and various temperatures and bacterial food sources. This approach identified more than 500 unique quantitative trait loci (QTL). As a proof of concept for our approach, we recapitulated a previously identified QTL that explains variation in response to the anthelmintic abamectin. Additionally, we identified five novel QTL that explain variation in response to abamectin treatment. We are actively pursuing another QTL, on the right arm of chromosome II that explains variation in response to the topoisomerase II poison etoposide. A scan of genetic variants underlying this QTL identified the candidate gene top-2, which encodes for one of the two known topoisomerase II proteins in the C. elegans genome. Strains sensitive to etoposide contain a top-2 gene with several predicted synonymous
and non-synonymous variants when compared to the N2 genetic background. A top-2 deletion in the N2 and non-synonymous variants when compared to the N2 genetic background. A top-2 deletion in the N 2 the causal gene underlying this QTL. We hypothesize that the Q797M variant present in sensitive strains leads to more stable binding of etoposide to TOPOII and therefore increases its potency as a poison. Our identification of conserved drug susceptibilities between humans and C. elegans and our ability to probe the genetic determinants of these susceptibilities has introduced C. elegans as a powerful model for elucidating the mechanisms underlying complex traits.

Genetic Diversity Toolkit

Each red dot on the map above corresponds to the location where a wild C. elegans strain was isolated. To date we have 124 unique isotopes sequenced at approximately 84 X coverage. This substantial level of coverage enables detection of genetic variation with high confidence. We use this genotypic variation
in combination with phenotype data generated from our phenotyping platform to make phenotypegenotype associations.

Summary of Identified QTL

The above figure depicts all of the unique QTL identified in our screen. We quantified the phenotypes of 96 wild isolates in the presence of 70 environmental perturbations. Altogether, After manual curation of the phenotypes at each QTL, we ended up with 81 unique QTL which are shown in the above figure.

Funding

PEW

IBiS Travel Award
CMBD Training Grant

Variation in top-2 Leads to Differential Etoposide Sensitivity

A) Resistance to etoposide is dominant to sensitivity. B) We showed that the $\mathrm{N} 2 \Delta t o p-2$ fails to complement the resistance of a natural allele in the CB4856 genetic back bround for body length reduction, indicating that top-2 is the causative gene for this phenotypic difference. An N2 npp-3 knockout strain
complemented CB4856 sensitivity, suggesting that it is not the causal gene (not shown).

A) Multiple sequence alignment of the two C. elegans TOPOII alleles and the human TOPOII alpha and beta isoforms. The variant we hypothesize is contributing to phenotypic variability in response to etoposide in C. elegans also varies between the two human isoforms (red). There is debate in the community whether this residue is important for etoposide binding. B-C) Electron density of the topoisomerase II poison binding pocket in hTOPOII beta showing etoposide (B) and amsacrine (C) bound [1]. Wu et al. hypothesize that the methionine reside in the hTOPOIl alpha leads to more stable binding of etoposide in the binding pocket,
while other groups believe this residue is not important for binding because it is in two conformations in the hTOPOIl beta crystal structure. We hypothesize that while other groups believe this residue is not important for binding because it is in two conformations in the hTOPOIl beta crystal structure. We hypothesize that
this residue is contributing to etoposide binding and stability and have a physiologically relevant way to quantify this effect. Our hypothesis is supported by this residue is contributing to etoposide binding and stability and have a physiologically relevant way to quantify this effect. Our hypothesis is supported by
variation in response to amsacrine treatment not mapping to the top-2 gene, suggesting to us that both N2 and CB4856 have normal topoisomerase II function. variation in response to amsacrine treatment not mapping to the top-2 gene, suggesting to us that both N2 and CB4856 have normal topoisomerase II function.
Additional support for this variant comes from the fact that the other highly correlated variants in the confidence interval are present in the hyper variable Cterminal domain of the protein. We have generated all the constructs to perform CRISPR/Cas9 mediated allele replacement to test our predictions.

