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ABSTRACT Phenotypic complexity is caused by the contributions of environmental factors and multiple genetic loci, interacting or
acting independently. Studies of yeast and Arabidopsis often find that the majority of natural variation across phenotypes is attribut-
able to independent additive quantitative trait loci (QTL). Detected loci in these organisms explain most of the estimated heritable
variation. By contrast, many heritable components underlying phenotypic variation in metazoan models remain undetected. Before the
relative impacts of additive and interactive variance components on metazoan phenotypic variation can be dissected, high replication
and precise phenotypic measurements are required to obtain sufficient statistical power to detect loci contributing to this missing
heritability. Here, we used a panel of 296 recombinant inbred advanced intercross lines of Caenorhabditis elegans and a high-
throughput fitness assay to detect loci underlying responses to 16 different toxins, including heavy metals, chemotherapeutic drugs,
pesticides, and neuropharmaceuticals. Using linkage mapping, we identified 82 QTL that underlie variation in responses to these
toxins, and predicted the relative contributions of additive loci and genetic interactions across various growth parameters. Additionally,
we identified three genomic regions that impact responses to multiple classes of toxins. These QTL hotspots could represent common
factors impacting toxin responses. We went further to generate near-isogenic lines and chromosome substitution strains, and then
experimentally validated these QTL hotspots, implicating additive and interactive loci that underlie toxin-response variation.
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RAPID advances in sequencing technologies have enabled
the collection of high-quality genomic data sets for many

species (Mardis 2017). These data, paired with a broad range
of high-throughput phenotypic assays, have made quantita-

tive genetics a powerful tool in biology. Linkage mapping has
been used to identify quantitative trait loci (QTL), leading to
profound impacts on human health (Easton et al. 1993;
Cowley 2006; Altshuler et al. 2008), agriculture and livestock
(Rothschild et al. 2007; Johnsson et al. 2015; Leal-Bertioli
et al. 2015; Shang et al. 2016), and basic biology (Mackay
2001; Andersen et al. 2015; Peng et al. 2016). Despite the
growing number of detected QTL across numerous traits,
these QTL often do not explain the complete heritable com-
ponent of trait variation (Rockman 2012). This missing her-
itability can be attributed to undetected small-effect additive
loci and/or interactions between QTL (Bloom et al. 2015).
Although some studies contend that epistatic effects among
QTL might explain missing heritability (Malmberg et al.
2005; Zuk et al. 2012; Nelson et al. 2013; Lachowiec et al.
2015; Mackay 2015), others argue that missing heritability
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comprises small-effect additive loci that remain undetected
in cases where statistical power is too low (Hill et al. 2008;
Yang et al. 2010; Mäki-Tanila and Hill 2014; Ehrenreich
2017). Quantitative geneticists have leveraged large num-
bers of recombinant strains in both yeast and Arabidopsis to
overcome power limitations, and concluded that, when
power is sufficient, small-effect additive components can be
identified that account for nearly all of the heritability of a
given trait (Simon et al. 2008; Bloom et al. 2013, 2015). We
require a metazoan system with high statistical power to de-
termine whether this predominantly additive QTL model re-
mains broadly applicable in animals.

One such tractable metazoan is the roundworm nematode
Caenorhabditis elegans. The genetic variation among a panel
of recombinant inbred advanced intercross lines (RIAILs)
generated between the N2 and CB4856 strains of C. elegans
(Rockman and Kruglyak 2009; Andersen et al. 2015) has
been leveraged in many linkage mapping analyses (Li et al.
2006; Gutteling et al. 2007a,b; Kammenga et al. 2007; Seidel
et al. 2008, 2011; Doroszuk et al. 2009; McGrath et al. 2009;
Reddy et al. 2009; Rockman et al. 2010; Viñuela et al. 2010;
Bendesky and Bargmann 2011; Bendesky et al. 2011, 2012;
Rodriguez et al. 2012; Andersen et al. 2014; Glater et al.
2014; Snoek et al. 2014; Balla et al. 2015; Schmid et al.
2015; Singh et al. 2016; Lee et al. 2017; Zdraljevic et al.
2017; Zamanian et al. 2018). Additionally, a high-throughput
phenotyping platform to rapidly and accurately measure an-
imal fitness could provide the replication and precision re-
quired to detect small-effect additive loci, and to determine
the relative contributions of additive and/or epistatic loci to
trait variation (Andersen et al. 2014; Zdraljevic et al. 2017).
Notably, the combination of this panel and phenotyping plat-
form have facilitated linkage mappings of multiple distinct
fitness parameters, resulting in the detection of a single QTL,
in fact a single quantitative trait gene (QTG), that underlies
several fitness-related traits (Andersen et al. 2014; Zdraljevic
et al. 2017). This example of pleiotropy suggests that large-
scale studies could reveal additional pleiotropic effects.

Such large-scale studies have implicated pleiotropic QTL
that impact the expression of a broad range of genes
(Keurentjes et al. 2007; Breitling et al. 2008; Rockman
et al. 2010; Hasin-Brumshtein et al. 2016). Variation in the
master regulators that are within these expression QTL hot-
spots have downstream effects on the transcription of many
genes. Similarly, other QTL hotspots could impact multiple
traits, such as responses to various conditions. In yeast, most
chemical-response QTL are thought to be unique to one or a
few conditions, whereas few QTL have been found to have
pleiotropic effects across many conditions (Ehrenreich et al.
2012; Knoch et al. 2017; Singh et al. 2017). Although QTL
underlying responses to individual conditions have been
identified across multiple animal models (Bubier et al.
2014; Marriage et al. 2014; Najarro et al. 2015; Crusio
et al. 2016; Highfill et al. 2017), the existence of QTL hotspots
that influence multiple condition responses has yet to be ob-
served broadly in metazoans.

Here, we performed a set of linkage mapping experiments
with a large panel of recombinant lines to identify QTL
implicated in responses to 16 different toxins and found three
QTL hotspots that underlie many of these responses. We
demonstrated how high replication in a high-throughput
fitness assay can enable the identification and validation of
QTL, even in cases of small phenotypic effects. Additionally,
we analyzed relative contributions of additive and epistatic
genetic loci in various toxin responses. Finally, we discovered
evidence for interactions between loci of the N2 and CB4856
strains that impact several toxin responses, and could suggest
how large regions of the genome were swept across the
species.

Materials and Methods

Strains

Animals were grown at 20� using OP50 bacteria spotted on
modified nematode growth medium, containing 1% agar and
0.7% agarose to prevent animals from burrowing. For each
assay, strains were propagated for five generations after star-
vation to reduce transgenerational effects of starvation
(Andersen et al. 2014). RIAILs used for linkagemappingwere
constructed previously (Andersen et al. 2015). The construc-
tion of near-isogenic lines (NILs) and chromosome substitu-
tion strains (CSSs) is detailed below, and all strains are listed
in the Supplemental Material. Strains are available upon
request.

High-throughput toxin-response assay

We used a modified version of the high-throughput fitness
assay described previously (Zdraljevic et al. 2017). Popula-
tions of each strain were passaged for four generations, am-
plified, and bleach-synchronized. Approximately 25 embryos
from each strain were then aliquoted to 96-well microtiter
plates at a final volume of 50 ml of K medium (Boyd et al.
2012). Embryos hatched overnight and arrested in the L1
larval stage. The following day, arrested L1 animals were
fed HB101 bacterial lysate [Pennsylvania State University
Shared Fermentation Facility, State College, PA; (García-
González et al. 2017)] at a final concentration of 5 mg/ml
in K medium and were grown to the L4 larval stage for 48 hr
at 20� with constant shaking. Three L4 larvae were then
sorted using a large-particle flow cytometer (COPAS BIO-
SORT; Union Biometrica, Holliston, MA) into microtiter
plates that contained HB101 lysate at 10 mg/ml, K medium,
50 mM kanamycin, and either diluent (1% DMSO or 1% wa-
ter) or diluent and a toxin of interest. The sorted animals
were then grown for 96 hr at 20� with constant shaking.
During this time, the sorted animals matured to adulthood
and laid embryos, yielding a population of parent and prog-
eny in each microtiter well. Prior to the measurement
of fitness parameters from the populations, animals were
treated with sodium azide (50 mM in M9) to straighten their
bodies for more accurate growth-response parameter mea-
surements. Traits that were measured by the BIOSORT
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include brood size (n), animal length (time of flight, TOF),
and optical density (extinction time, EXT).

Toxin-response trait calculations

Phenotypic measurements collected by the BIOSORT were
processed using the R package easysorter, which was specifi-
cally developed for processing this type of data set (Shimko
and Andersen 2014). Briefly, the function read_data imported
raw phenotypic data then identified and eliminated bub-
bles. Next, the remove_contamination function discarded
wells that contained bacterial or fungal contamination (de-
termined by visual inspection) prior to analyzing population
parameters. The sumplate function then calculated normal-
ized measurements and summary statistics of the assayed
traits for the population of animals in each well. The number
of animals in each well was divided by the number of animals
sorted into that well, yielding a normalized brood size (norm.
n). Additionally, optical density (EXT) of each animal was
divided by animal length (TOF), resulting in a normalized
optical density (norm.EXT) for each animal in each well. The
norm.EXT measurement represents the optical density with-
out conflating variation in body length. The summary statis-
tics calculated for each population include the 10th, 25th,
50th, 75th, and 90th quantiles, the mean, and median mea-
surements of TOF, EXT, and norm.EXT, as well as variance
for TOF and EXT. Previously, each of these summary statistics
has been shown to reveal distinct genetic architectures un-
derlying trait variation, suggesting values to demonstrate the
range of biological phenomena that can be captured using
this platform (Andersen et al. 2015). In total, this analysis
resulted in 24 phenotypic measurements for each condition
tested. When strains were measured across multiple assay
days, the regress(assay = TRUE) function was used to fit a
linear model with the formula (phenotype� assay) to account
for differences among assays. Next, outliers were removed by
eliminating phenotypic values that were outside two SD of
the mean (unless at least 5% of the strains were outside this
range in the case of RIAIL assays). Finally, toxin-specific ef-
fects were calculated using the regress(assay = FALSE) func-
tion from easysorter, which fits a linear model with the
formula (phenotype� control phenotype) to generate residual
phenotypic values that account for differences between pop-
ulations that were present in control conditions. For this rea-
son, strain phenotypes in control conditions can influence
regressed toxin effects and trait categorizations (below).

Dose-response assays

For each toxin, a dose-response experiment was performed
using quadruplicates of four genetically diverged strains (N2,
CB4856, DL238, and JU258). Animals were assayed using
the high-throughput fitness assay and toxin-response trait
calculations were performed as described above (Supple-
mental Material, File S1). The concentration of each toxin
that provided a highly reproducible toxin-specific effect with
variation between N2 and CB4856 across three distinct traits
(brood size, norm.n; mean length, mean.TOF; and mean

optical density, mean.norm.EXT) was selected for linkage
mapping experiments. The chosen concentrations and dilu-
ents of each toxin are as follows: cadmium 100 mM in water,
carmustine 250 mM in DMSO, chlorothalonil 250 mM in
DMSO, chlorpyrifos 1 mM in DMSO, cisplatin 250 mM in
water, copper 250 mM in water, diquat 250 mM in water,
fluoxetine 250 mM in DMSO, Floxuridine (FUdR) 50 mM in
water, irinotecan 125 mM in DMSO, mechlorethamine
200 mM in DMSO, paraquat 500 mM in water (50 mM was
used for the CSS and NIL assays), silver 150 mM in water,
topotecan 400 mM in water, tunicamycin 10 mM in DMSO,
and vincristine 80mM inwater (Table S1). The concentration
of paraquat differs to the concentration used previously
(Andersen et al. 2015), suggesting why the genetic architec-
tures are different between the two studies. Toxins assayed in
this manuscript were purchased from Fluka Chemical (Buchs,
Switzerland) (chlorothalonil, #36791-250MG; chlorpyrifos,
#45395-250MG; and diquat dibromide monohydrate,
#45422-250MG-R), Sigma ([sigma Chemical], St. Louis, MO)
(vincristine sulfate salt, #V8879-25MG; cisplatin, #479306-1G;
silver nitrate, #209139; carmustine, #1096724-75MG; and
topotecan hydrochloride, #1672257-350MG), Calbiochem
(San Diego, CA) (tunicamycin, #654380), Aldrich Chemical
(Milwaukee, WI) (mechlorethamine hydrochloride, #122564-5G
and cadmium chloride #01906BX), Alfa Aesar (irinotecan hydro-
chloride trihydrate, #AAJ62370-MD), Bioworld (5-fluoro-2’-
deoxyuridine, #50256011), Enzo Life Sciences (fluoxetine,
#89160-860), Mallinckrodt (cupric sulfate, #4844KBCK),
and Chem Service (paraquat, #ps-366).

Linkage mapping

A total of 296 RIAILs were assayed in the high-throughput
fitness assay in the presence of each of the 16 toxins listed
above as well as control conditions (water or DMSO, File S2).
Linkage mapping was performed on each of the 384 toxin-
response traits (16 toxins 3 24 population parameters per
toxin) using the R package linkagemapping (www.github.
com/AndersenLab/linkagemapping, File S3). The genotypic
data (WS245) and residual phenotypic data were merged
using the merge_pheno function. QTL were detected using
the fsearch function, which scaled phenotypes to have amean
of zero and variance of one, then calculated logarithm of odds
(LOD) scores for each marker and each trait as -n(ln(1-R2)/
2ln(10)), where r is the Pearson correlation coefficient be-
tween RIAIL genotypes at the marker and trait values (Bloom
et al. 2013). We noted that this scaling of the data did not
impact mappings because scaled and unscaled mappings
were identical. The phenotypic values of each RIAIL were
then permuted randomly while maintaining correlation
structure among phenotypes 1000 times to calculate a signif-
icance threshold based on a genome-wide error rate of 5%.
The marker with the highest LOD score was then set as a
cofactor andmapping repeated iteratively until no significant
QTL were detected. Finally, the annotate_lods function was
used to calculate the fraction of variation in RIAIL pheno-
types explained by each QTL. The 95% C.I.s were defined
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by markers within a 1.5-LOD drop from the marker with the
maximum LOD score.

Principal component analysis of RIAILs

Because some of the 24 population parameters measured by
the BIOSORT are highly correlated, a principal component
analysis (PCA) was performed. For each growth-response
trait, RIAIL phenotypic measurements were scaled to have
amean of zero and a SD of one. The princomp function within
the stats package in R (R Core Team 2017) was used to run a
PCA for each toxin. For each toxin, the minimum number of
principal components (PCs) that explained at least 90% of
the total phenotypic variance in the RIAILs was mapped
through linkage mapping (File S4 and Table S2), totaling
97 PCs across all toxins (File S5). We additionally performed
a two-dimensional genome scan using the function scantwo()
in the qtl package (Broman et al. 2003) for all 47 significantly
mapped PCs (File S6). Significant interactions were determined
by permuting the phenotype data for each PC 1000 times and
determining the 5% genome-wide error rate.

Heritability estimates

Broad-sense heritability was estimated for each of the 97 PCs
using the formulaH2= (sR

22sP
2)/sR

2, where sR
2 and sP

2 are the
variance among the RIAIL and parental (N2 and CB4856)
phenotypic values, respectively (Brem and Kruglyak 2005).
A variance component model using the R package regresswas
used to estimate the fraction of phenotypic variation ex-
plained by additive genetic factors (“narrow-sense” heritabil-
ity) (Clifford and McCullagh 2006, 2014; Bloom et al. 2015).
The additive relatedness matrix was calculated as the corre-
lation of marker genotypes between each pair of strains. In
addition, a two-component variance component model was
calculated with both an additive and pairwise interaction
effect (File S7). The pairwise interaction relatedness matrix
was calculated as the Hadamard product of the additive re-
latedness matrix.

Calculation of hotspots

We estimated centimorgan distances from recombination
events in the RIAIL panel to account for nonuniform distri-
bution of genetic diversity across the genome. The genome
was divided into 65 total bins with each bin containing 26 cM.
To determine if the 82 QTL significantly clustered around
particular genomic regions, we set a threshold for significant
QTL hotspots based on the 99th percentile of a Poisson
distribution with a mean of 1.2 QTL (total QTL/total bins).

Generation of NILs

NILs were generated by crossing selected RIAILs to each
parental genotype. For each NIL, eight crosses were per-
formed followed by six generations of propagating isogenic
lines to ensure homozygosity of the genome. For each cross,
PCR amplicons for insertion–deletion (indel) variants on the
left and right of the introgressed region were used to confirm
progeny genotypes, and select nonrecombinants within the

introgressed region. NILs were whole-genome sequenced as
described below to confirm their genotype (File S8). Re-
agents used to generate NILs and a summary of each intro-
gressed region are detailed in the Supplemental Material.
A statistical power calculation was used to determine the
minimal number of technical replicates required to observe
the predicted phenotypic effect of each QTL at 80% power.
These calculations are listed in Table S3. The number of
technical replicates tested per assay for any given toxin did
not exceed 100 because of experimental timing constraints.
The PCs that mapped to each NIL region are those with a QTL
with a confidence interval that overlaps with or spans the
entire introgressed region in the NILs (Table S4 and Table 1).

Whole-genome sequence library preparation
and analysis

DNAwas isolated from 100 to 300ml of packed animals using
QIAGEN’s Blood and Tissue kit (Valencia, CA; catalog #
69506). Following the ATL lysis step, 4 ml of 100 mg/ml
RNAse was added to each sample and allowed to incubate
for 2 min at room temperature. DNA concentration was de-
termined using the Qubit dsDNA BR Assay Kit (catalog #
Q32850). For each strain, a total of 0.75 ng of DNA was
combined with 2.5 ml transposome (kit # FC-121-1011; Illu-
mina) diluted 353 with 13 Tris Buffer (103 Tris Buffer:
100 mM Tris-HCl pH 8.0 and 50 mM MgCl2) in a 10 ml final
volume on ice. This reaction was incubated at 55� for 10 min.
The amplification reaction for each strain contained (final
concentrations): 13 ExTaq Buffer, 0.2 mM dNTPs, 1 U ExTaq
(catalog # RR001A; Takara), 0.2 mM primer 1, 0.2 mM
primer 2, and 5 ml of tagmentation material from the pre-
vious step in a 25 ml total volume. Each strain had a unique
pair of indexed primers. We first made a master mix contain-
ing buffer, water, dNTPs, and ExTaq, then aliquoted the ap-
propriate volume of this mix into each well. We added the
specific primer sets to each well and finally the tagmentation
reaction. The amplification reaction was incubated in a ther-
mocycler with the following conditions: 72� for 3 min (13);
95� for 30 sec (13); 95� for 10 sec, 62� for 30 sec, and 72� for
3 min (203); and 10� on hold. We combined 8 ml from each
amplification reaction to generate a pool of libraries. A por-
tion of the libraries was electrophoresed on a 2% agarose gel.
DNA was excised and gel purified using QIAGEN’s Gel Puri-
fication Kit (catalog # 28706). The libraries were sequenced
on the Illumina HiSeq 2500 platform using a paired-end
100-bp reaction lane. Alignment, variant calling, and filtering
were performed as described previously (Cook et al. 2016).
NIL and CSS genotypes were called using the VCF file and a
Hidden Markov Model as described previously (Cook and
Andersen 2017).

Generation of chromosome substitution strains (CSS)

CSSs were generated by crossing N2 and CB4856 parental
strains, and mating cross progeny, to each parental genotype.
For each CSS, eight crosses were performed followed by
six generations of propagating isogenic lines to ensure
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homozygosity of the genome. For each cross, PCR amplicons
for indels on the left and right of the introgressed region were
used to confirm progeny genotypes and select nonrecombi-
nants within the introgressed region. CSSs were whole-genome
sequenced as described above to confirm their genotype
(File S8). Reagents used to generate CSSs are detailed in
the Supplemental Material. As described for NIL assays,
power calculations were performed to determine the num-
ber of technical replicates required to observe the predicted
phenotypic effect of the CSSs.

Selection of traits to categorize in CSS and NIL assays

Pairwise correlations of RIAIL phenotypes among the
24 growth-response traits measured by the BIOSORT were
calculated using the cor function within the stats package in
R, with the use argument set to “pairwise.complete.obs.” For
each toxin, hierarchical clustering was performed using the
function hclust from the stats package (R Core Team 2017).
Cutreewas then used to group the resulting dendrogram into
k groups, where k is equal to the minimum number of PCs
that explained at least 90% of the phenotypic variance in the
RIAILs. For each PC that mapped to a hotspot, the growth-
response trait that was most correlated to that PC, as well as
all growth-response traits within that cluster of the dendro-
gram, were assayed in NIL and CSS experiments (File S9 and
Table 2).

Categorization of CSS and NIL results

Toxin responses forNILs andCSSswere tested using the high-
throughputfitness assay for traits correlatedwithmappedPCs
as described above (File S10 and Table 2). Complete pairwise
statistical analyses of strains was performed for each
trait tested in all CSS and NIL assays (Tukey’s honest signif-
icant difference test, File S11). A P-value of P , 0.05 was

used as a threshold for statistical significance. NIL recapitu-
lation was defined by the significance and direction of effect
of the NIL compared to the parental strains. Six categories
were defined: (1) “no parental difference,” (2) “recapitula-
tion,” (3) “no QTL effect,” (4) “bidirectional interaction,” (5)
“unidirectional interaction,” and (6) “miscellaneous” (Table
3). Traits for which N2 and CB4856 phenotypes were not
statistically different comprise the “no parental difference”
category and were not further categorized. Traits in the “re-
capitulation” category must satisfy the following criteria: sig-
nificant difference between the parental strain phenotypes,
significant difference between phenotypes of each NIL and
the parent that shares its background genotype, and both
NILs must display the expected direction of effect of the intro-
gressed genotype. Traits with “no QTL effect” displayed a
significant parental phenotypic difference and the phenotype
of each NIL was not statistically different from the phenotype
of the parent sharing its background genotype. Traits that
have a “bidirectional interaction” must display a significant
parental phenotypic difference, the phenotypes of both NILs
must be significantly different from phenotypes of both par-
ents, and the phenotypes of both NILs must be transgressive
(lie beyond the phenotypic range of the parental strains).
Lastly, traits with a “unidirectional interaction” were catego-
rized similarly to the bidirectional interaction, except only
one NIL must display a transgressive phenotype, and the
other NIL either shows no QTL effect or recapitulation. Traits
that did not fit these descriptions were categorized as
“miscellaneous”.

Traits in the chromosome V hotspot were further catego-
rized using the combined data from both the CSS and NIL
assays. Seven categories were defined: (1) “no parental dif-
ference”, (2) “recapitulation”, (3) “no QTL effect”, (4) “ex-
ternal interchromosomal interaction” (uni- or bidirectional),
(5) “internal interchromosomal interaction” (uni- or bidirec-
tional), (6) “intrachromosomal interaction” (uni- or bidirec-
tional), and (7) “miscellaneous” (Table 4). No parental
difference was defined by traits in which the parental strains
were either not significantly different from each other or did
not have the same direction of effect in both the CSS and NIL
assays. “Recapitulation” and “no QTL effect” traits were de-
fined by traits that were classified as either recapitulating or
no QTL effect, respectively, in both assays. Traits displaying
an “external interchromosomal interaction” show evidence
for interaction in the CSS but no interaction (either recapit-
ulating or no QTL effect) in the NIL. On the other hand, traits
displaying an “internal interchromosomal interaction” showed
evidence of the same interaction for both the CSS and the NIL
assays. Finally, traits displaying an “intrachromosomal interac-
tion” showed evidence of an interaction in the NIL but not in
the CSS assay. All other traits that did not fit these descriptions
were categorized as “miscellaneous” (File S12).

Statistical analysis

All statistical tests of phenotypic differences in the NIL and
CSS assays were performed in R (version 3.3.1) using the

Table 1 Toxins and PCs mapped per hotspot

Toxin Class
PCs in
IVL

PCs in
IVR

PCs in
V

Cadmium Heavy metal 0 0 0
Carmustinea Chemotherapeutic 1a 0 1a

Chlorothalonila Pesticide 2a 1a 1a

Chlorpyrifos Pesticide 1 1 0
Cisplatina Chemotherapeutic 2a 1 2a

Copper Heavy metal 2 0 0
Diquat Pesticide 0 0 0
Fluoxetinea Neuropharmaceutical 1 2a 0
FUdR Chemotherapeutic 1 1 0
Irinotecana Chemotherapeutic 0 1a 2
Mechlorethamine Chemotherapeutic 0 0 1
Paraquata Pesticide 0 0 1a

Silvera Heavy metal 3a 0 1a

Topotecan Chemotherapeutic 1 0 0
Tunicamycin Chemotherapeutic 2a 0 0
Vincristine Chemotherapeutic 2 1 0

PC, principal component; IVL, hotspot on the center of chromosome IV; IVR,
hotspot on the center of chromosome IV; V, hotspot on the center of chromosome
V FUdR, Floxuridine.
a Denotes a toxin tested with near-isogenic line and/or chromosome substitution
strain assays.
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TukeyHSD function (R Core Team 2017) on an ANOVA
model with the formula (phenotype � strain). The P-values
of individual pairwise strain comparisons were reported and
a P-value of P , 0.05 was deemed significant. The direction
of effect of each NIL was determined by comparing the me-
dian phenotypic value of the NIL replicates to that of each
parental strain. NILs whose phenotypes were significantly
different from both parents and whose median lied outside
of the range of the parental phenotype medians were consid-
ered hypersensitive or hyperresistant. Comparing LOD
scores, and variance explained between traits with “no pa-
rental effect” and traits with a significant parental effect in
the NIL assays, was performed using a Wilcoxon rank sum
test with continuity correction using the wilcox.test function
in R (R Core Team 2017).

Data availability

File S1 contains results of the dose response assays for all
toxins. FileS2contains the residual phenotypic values for each
RIAIL for each trait. File S3 contains the linkage mapping
results for the 384 toxin-response traits tested with the high-
throughput assay (HTA). File S4 contains the phenotypic
values for each RIAIL for each of the significant PCs. File S5
contains the annotated QTL and confidence intervals identi-
fied through linkage mapping for PCs. File S6 contains the
results of a two-factor genome scan for all PCs with a signif-
icant QTL identified with linkage mapping. File S7 contains

the broad-sense heritability estimates, as well as additive and
interactive components of heritability for each PC. File S8 is a
VCF file for all NILs and CSSs mentioned in this manuscript.
File S9 contains each of the 97 significant PCs and the
corresponding correlation value with each growth-response
trait. File S10 contains the residual phenotypic data for all
strains, including parents, tested in the NIL and CSS assays.
File S11 contains the statistical significance for all pairwise
combinations of strains tested for each trait in theNIL andCSS
assays. File S12 contains the assay categorization for all traits
tested with the NIL and CSS strains. The data sets and code
for generating figures can be found at http:// github.com/
AndersenLab/QTLhotspot Supplemental material available
at Figshare: https://doi.org/10.25386/genetics.7158911.

Results

Identification of QTL underlying variation in response to
16 diverse toxins

Using a high-throughput fitness assay (Materials and Meth-
ods), we tested variation in 24 fitness-related traits in re-
sponses of four genetically divergent strains to different
concentrations of 16 toxins, comprising chemotherapeutics,
heavy metals, pesticides, and neuropharmaceuticals (Figure
S1, File S1, and Table S1). A concentration of each toxin was
selected that minimized within-strain variation and maxi-
mized variation between two of these divergent strains, N2

Table 2 All traits tested in NIL and CSS assays

PC Hotspot Correlated traits Correlation range

Carmustine.PC1 V mean.EXT, mean.TOF, q75.EXT, median.EXT, median.TOF, q75.TOF, median.
norm.EXT, q90.TOF, q90.EXT

0.72–0.95

Carmustine.PC6 IVL q25.norm.EXT, q10.norm.EXT 0.33–0.39
Chlorothalonil.PC1 V mean.EXT, q75.EXT, mean.TOF, median.EXT, median.TOF, q75.TOF 0.73–0.95
Chlorothalonil.PC2 IVL cv.TOF, cv.EXT 0.72–0.90
Chlorothalonil.PC3 IVL, IVR mean.norm.EXT, q75.norm.EXT, q90.norm.EXT, median.norm.EXT 0.50–0.65
Cisplatin.PC1 IVL, V mean.EXT, mean.TOF, median.EXT, median.TOF, q75.TOF, q75.EXT, q90.

EXT, q90.TOF
0.78–0.97

Cisplatin.PC3 IVL var.TOF, var.EXT 0.38–0.54
Cisplatin.PC4 V norm.n, n 0.76–0.80
Fluoxetine.PC1 IVR mean.norm.EXT, q75.norm.EXT, mean.EXT, q75.EXT, q90.norm.EXT, q90.

EXT
0.79–0.96

Fluoxetine.PC5 IVR q90.norm.EXT, q75.norm.EXT, mean.norm.EXT, q75.EXT, mean.EXT, q90.
EXT

0.07–0.40

Irinotecan.PC2 IVR cv.TOF, cv.EXT 0.57–0.84
Paraquat.PC1 V median.EXT, mean.EXT, q25.EXT, q75.EXT, mean.TOF, q75.TOF, q10.EXT,

q90.EXT, q90.TOF, median.TOF, q25.TOF, q10.TOF
0.75–0.95

Silver.PC1 V mean.EXT, median.EXT, q75.EXT, mean.TOF, q90.EXT, q90.TOF, median.
TOF, q75.TOF

0.77–0.96

Silver.PC3 IVL q10.norm.EXT, q25.norm.EXT, mean.norm.EXT, median.norm.EXT, q75.
norm.EXT, q90.norm.EXT

0.32–0.64

Silver.PC4 IVL n, norm.n 0.84–0.84
Silver.PC5 IVL n, norm.n 0.41–0.41
Tunicamycin.PC1 IVL median.EXT, q75.EXT, mean.TOF, q75.TOF, median.TOF, median.norm.EXT,

q90.EXT, q90.TOF, mean.EXT, q75.norm.EXT, mean.norm.EXT, q25.norm.
EXT, q90.norm.EXT, q10.norm.EXT

0.69–0.96

Tunicamycin.PC3 IVL norm.n, n 0.47–0.50

PC, principal component; V, hotspot on the center of chromosome V; EXT, extinction; TOF, time of flight; IVL, hotspot on the center of chromosome IV; IVR, hotspot on the
right of chromosome IV.
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(the laboratory strain) and CB4856 (a wild isolate from
Hawaii) (Table S1). For the selected concentration of each
toxin, we assayed 24 growth-response traits for a panel of
296 RIAILs generated between the N2 and CB4856 parental
genetic backgrounds (File S2) (Andersen et al. 2015). We
then performed linkage mapping for each of the 24 traits
across each of the 16 toxins, for a total of 384 toxin-trait
mappings. Through this method, we identified 462 QTL
across 247 traits (Figure S2 and File S3). However, many of
the toxin-response traits are correlated (Figure S3), which
could result in an increased detection of false-positive QTL.
To account for this bias, we performed principal component
analysis (PCA) for each toxin. The minimum number of prin-
cipal components (PCs) that explained at least 90% of the
total phenotypic variance within each toxin was selected for
mapping, for a total of 97 PCs across all toxins (minimum of
five PCs and a maximum of eight PCs per toxin, File S4 and
Table S2). We then used linkage mapping to identify QTL
that underlie variation in these 97 PCs.

We detected a total of 82 significant QTL (across 47 PCs)
from the 97 PCs tested (Figure 1, Figure S4, and File S5). We
did not find a single toxin-response QTL shared robustly
across all of the various PCs and toxins tested, nor across
all PCs within any one toxin. However, the majority of the
QTL on chromosome I were detected in responses to chemo-
therapeutics. Additionally, almost every toxin (with the ex-
ception of FUdR) had QTL that underlie trait variation on at
least two different chromosomes, highlighting the diverse
architectures implicated across traits, even within a single
toxin. Despite the seemingly independent distributions of
QTL, we found that the majority of the QTL (61%) mapped
to chromosomes IV and V.

Both additive and interactive QTL underlie
toxin responses

For each of the PCs that were impacted by the 82 QTL
identified using linkage mapping, we calculated the broad-
sense heritability, the proportion of broad-sense heritability
that could be attributed to additive genetic components (nar-
row-sense heritability) (Figure 2A), and the proportion of
narrow-sense heritability that was explained by QTL detected
through linkage mapping (Figure 2B and File S7, Materials
and Methods). In many cases, additive genetic components
could not explain all of the phenotypic variation predicted to
be caused by genetic factors. These results suggest that other
additive loci with small effect sizes impact toxin responses,

but we failed to detect these QTL by our linkage mapping
analyses, potentially because of high complexity and/or insuf-
ficient statistical power. Alternatively, this missing heritability
could be indicative of genetic interactions (Bloom et al. 2013).

To determine how much of the phenotypic variance comes
fromadditiveor interactinggenetic components,wefitteda linear
mixed-effect model to the RIAIL phenotype data for the 47 PCs
controlled by the 82 QTL. We observed a range of additive and
epistatic components contributing to phenotypic variation across
toxin classes (Figure S4, Figure S5, and File S7). On average,
cisplatin, topotecan,andFUdRareprimarilyexplainedbyadditive
models (Figure S4). Alternatively, paraquat, irinotecan, vincris-
tine, and mechlorethamine have a larger fraction of their pheno-
typic variance attributable to genetic interactions than additive
effects (Figure S4). To localize potential genetic interactions for
these 82 QTL, we scanned the genome for interactions between
pairsofmarkersthatmightaffectthephenotypicdistributionofthe
RIAIL panel (Materials and Methods). We identified three signif-
icant interactions (File S6). This two-factor genome scan was
unable to localize all epistatic components identified by the
linear mixed-effect model (Figure 2), perhaps because of miss-
ing small-effect additive loci in the model and/or insufficient
statistical power to identify small-effect interactions.

Three QTL hotspots underlie variation in responses to
diverse toxins

The majority of toxin-response QTL cluster on chromosomes
IV and V (Figure 1). We sought to determine if such QTL
clustering could be expected by chance or if this clustering
is indicative of toxin-response QTL hotspots. To account for
the higher rate of recombination, and thus more genetic di-
versity, on the chromosome arms (Rockman and Kruglyak
2009), we divided the genome evenly into 65 bins and cal-
culated the number of QTL that mapped to each bin (Figure
3, Materials and Methods). Three bins with more QTL than
expected based on a Poisson distribution (Brem and Kruglyak
2005) were classified as hotspots. These hotspots are located
on the center of chromosome IV, the right of chromosome IV,
and the center of chromosome V, and are hereby denoted as
IVL, IVR, and V, respectively. We identified the same three
hotspots through analysis of linkage mapping results from
toxin-response phenotypes that were used to calculate PCs.
Importantly, these hotspots are not driven by multiple PCs
within a single toxin. Instead, hotspots comprise multiple
QTL across a variety of PCs and toxins. In fact, 14 of the 16 tox-
ins tested have a PC that maps to at least one of the three
hotspots (Table 1). Of the 82 QTL, 18 mapped to IVL, eight
mapped to IVR, and ninemapped to V. In total, 33 QTLmap to
a hotspot (note that two QTL have confidence intervals that
span both hotspots on chromosome IV). We sought to exper-
imentally validate the predicted additive and epistatic effects
on toxin responses for QTL that mapped to the three hotspots.

NILs recapitulate some of the predicted QTL effects

To experimentally validate the QTL identified from linkage
mapping, we created NILs for the IVL, IVR, and V hotspots.

Table 3 Categorization summary from NIL phenotypes

Primary category Number of tests (99)

No parental effect 23
Recapitulation 4
No QTL effect 11
Unidirectional transgressive 38
Bidirectional transgressive 7
Miscellaneous 16
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Each NIL has a small genomic region introgressed from one
parental strain into the genome of the opposite parental strain
(Materials and Methods). These NILs were whole-genome
sequenced and found to match the expected genotype in
the hotspot region; however, additional breakpoints were
observed (Material and Methods, File S8). We tested each
NIL in our high-throughput fitness assay for a subset of the
toxins with a QTL that maps to a given hotspot, choosing QTL
with small, medium, and large effect sizes to test our ability to
recapitulate various effect sizes (Table S4, Table 1, and Table
2). We tested five toxins (10 QTL) with the IVL NILs, three
toxins (four QTL) with the IVRNILs, and five toxins (six QTL)
with the V NILs. In total, we tested 20 QTL across eight toxins
for recapitulation using the NILs.

For each of these 20 QTL, we identified the toxin-response
trait that ismost correlatedwith thePCcontrolledby thatQTL.
We then assayed the NILs for that toxin-response trait as well
asall toxin-response traitswithin its same trait cluster, because
each PC comprises multiple toxin-response traits (Table 2,
Materials and Methods). We tested 42 toxin-response traits
with the IVL NILs, 12 toxin-response traits with the IVR NILs,
and 45 toxin-response traits with the V NILs (Figure S6, File
S10, and Table 2). In total, we performed 99 tests of recapit-
ulation of QTL effects for toxin-response traits. The results of
these tests allowed us to sort QTL effects into six different
categories: “no parental effect”, “recapitulation”, “no QTL
effect”, “unidirectional transgressive,” “bidirectional trans-
gressive,” or “miscellaneous” (Figure S7, File S12, and Table
3).

Of these99 tests, 23didnotdisplaya significantphenotypic
difference between the parent strains (N2 and CB4856) in
the NIL assay and were categorized as “no parental effect”
(Materials and Methods, Figure S6 and Table 3). The remaining
76 tests in which a significant parental difference was observed
were classified further. We predicted that if a single QTL in the
introgressed region contributed to the parental phenotypic dif-
ference, then each NIL would have a phenotype significantly
different from the parental strain with the same genetic back-
ground. Furthermore, we expected each NIL to have a pheno-
type similar to the parental strain of its introgressed genomic
region. This “recapitulation”model was consistent for four tests

(Figure S6 and Table 3). The normalized brood size trait in
cisplatin (cisplatin.norm.n in cisplatin PC4) is one such example
of a trait in which the NILs on the center of chromosome V
recapitulated the expected parental phenotype (Figure 4A).
For 11 of the remaining 72 tests, the phenotype of each NIL
was not significantly different from the phenotype of the paren-
tal strain sharing its background genotype (Figure S6 and Table
3). This phenotype indicates that the introgressed NIL region
was not affecting the toxin-response phenotype. This lack of
QTL effect suggests that the genetic architecture is more com-
plex, we lacked sufficient statistical power to detect the QTL
effect, or the real QTL is outside the introgressed region. The
NILs on the center of chromosome V showed this result for
median animal length in silver (silver.median.TOF in silver
PC1) (Figure 4B). The phenotypes of the NILs for the remaining
61 tests cannot be explained by a single-QTL model. For many
of these tests, we observed NIL phenotypes that are more sen-
sitive or more resistant than both parental strains, suggesting
that loci of opposite genotypes act additively or interact in the
NILs to create transgressive phenotypes (Dittrich-Reed and Fitz-
patrick 2013). This finding was supported by the mixed-effects
model, which suggested that both additive and interacting QTL
remained undetected by linkage mapping (Figure 2). We fur-
ther explored the results of these 61 tests by characterizing them
based on the patterns of the transgressive phenotypes we
observed.

For 38 of these 61 tests, only one NIL showed a trans-
gressive phenotype (Figure S6 and Table 3). Some of these
38 “unidirectional transgressive” phenotypes seem to show
an antagonism that counteracted the effect of the intro-
gressed region (a predicted sensitive phenotype becomes
hyperresistant or a predicted resistant phenotype becomes
hypersensitive, e.g., carmustine.median.EXT in carmustine
PC1, Figure 4C). Other phenotypes displayed synergy that
increased the effect of the introgressed region (a predicted
sensitive phenotype becomes a hypersensitive phenotype or a
predicted resistant phenotype becomes a hyperresistant phe-
notype, e.g., cisplatin.q90.EXT in cisplatin PC1, Figure 4D).
Interestingly, in most cases (82%), the transgressive pheno-
type was observed in the strain with the N2 genotype intro-
gressed into the CB4856 background.

In addition to unidirectional transgressive phenotypes, we
identified seven tests with suggested “bidirectional transgres-
sive” phenotypes in which both NILs showed an extreme
phenotype compared to the parental strains (Figure S6 and
Table 3). Some of these “bidirectional transgressive” pheno-
types were suggestive of purely antagonistic effects (e.g.,
tunicamycin.mean.norm.EXT, Figure S6), but others sug-
gested an antagonistic effect in one NIL and a synergistic
effect in the other (e.g., paraquat.median.TOF, Figure S6).
We identified no cases of bidirectional synergistic effects. The
remaining 16 tests of the 76with a parental difference did not
fall into any of the above categories and were classified as
“miscellaneous” (Table 3).

The toxin-response traits tested above for recapitulation of
QTL effects were selected to represent PCs that were mapped

Table 4 Categorization summary from combined NIL and CSS
phenotypes

Secondary
Category

Number
of Traits (8) Traits

Recapitulation 1 cisplatin.norm.n
Interchromosomal

(external)
1 silver.median.TOF (bidirectional)

Interchromosomal
(internal)

1 carmustine.median.EXT (unidirec-
tional)

Intrachromosomal 2 cisplatin.q90.EXT (unidirectional),
cisplatin.q90.TOF (unidirectional)

Miscellaneous 3 cisplatin.n, paraquat.q10.TOF, silver.
median.EXT

EXT, extinction; TOF, time of flight.
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with linkage mapping. We wanted to compare the NIL assay
categorizations for the toxin-response traits thatunderlie each
PC to analyze the overall QTL effect (Figure S8). For example,
two traits, n and norm.n, were selected to represent cisplatin
PC4 (Table 2). Both of these toxin-response traits were
placed into the “recapitulation” category from the NIL assay

results (Figure S6 and Figure S8). These results suggest that a
single additive QTL underlies the brood size variation cap-
tured by PC4. Fourteen tunicamycin-response traits were se-
lected to represent tunicamycin PC1 (Table 2). Eight of these
14 traits displayed “unidirectional transgressive pheno-
types”, four traits displayed “bidirectional transgressive

Figure 1 Diverse genetic architectures are implicated in responses to 16 toxins. Linkage mapping results for principal components that represent 82 QTL
across 16 toxins, comprising chemotherapeutics (teal), heavy metals (orange), pesticides (purple), and neuropharmaceuticals (pink) are plotted. Genomic
position (Megabase) is shown along the x-axis, split by chromosome, and each of the 47 principal components with a significant QTL is plotted along the
y-axis. Each QTL is plotted as a point at the location of the most significant genetic marker and a line indicating the 95% C.I. QTL are colored by the
logarithm of the odds (LOD) score, increasing in significance from blue to green to yellow. FUdR, floxuridine.
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phenotypes”, and the remaining two traits did not have a
significant parental phenotypic difference (Figure S6 and Fig-
ure S8). Regardless of the classification, we see the same
trend of resistance (ECA231 . N2 . CB4856 . ECA229)
across 11 of the 14 traits representing this PC. Therefore,
our strict significance thresholds for categorization might
have caused some phenotypes to be miscategorized (usually
into the “miscellaneous” or “no parental/QTL effect” cate-
gories). The prevalence of transgressive phenotypes in
tunicamycin-response traits suggests that multiple QTL,
acting additively or interacting, might impact tunicamycin
responses.

We next sought to compare categorizations of toxin-re-
sponse traits and QTL effect sizes of the PCs for those traits.
The QTL underlying cisplatin PC4 explains �7% of the total
phenotypic variance (Table S4). The traits selected to repre-
sent cisplatin PC4 were placed into the recapitulation cate-
gory, despite the small effect size of the QTL (Figure S6 and
Figure S8). In the other example above, the QTL underlying
tunicamycin PC1 explains almost 16% of the total phenotypic
variance, which is one of the highest effect sizes mapped in
this study (Table S4). The toxin-response traits selected to
represent this PC showed mostly transgressive phenotypes,
indicating undetected additive or interacting QTL despite the
seemingly large-effect additive QTL identified in linkage
mapping (Figure S6 and Figure S8).

CSSs localize QTL underlying transgressive phenotypes

Because we found evidence of loci where opposite genotypes
at each locus cause transgressive phenotypes, we attempted
to further characterize these loci (Figure 5 and Figure S7).
To define each set of loci as either “intrachromosomal” or

“interchromosomal”, we built reciprocal CSSs for the hotspot
on chromosome V that had the entire chromosome V intro-
gressed from one parental strain into the genome of the op-
posite parental strain (Materials and Methods). The hotspot
on chromosome V was chosen to isolate the effects of one
hotspot and avoid complications arising from traits whose
confidence intervals might lie within both of the hotspots
on chromosome IV. The CSSs were whole-genome sequenced
and found to have the expected genotype at all markers (Ma-
terials and Methods, File S8), except for the chromosome I
incompatibility locus (Seidel et al. 2008, 2011). We per-
formed tests of recapitulation of QTL effects with the CSSs
for each of the 45 toxin-response traits across the five toxins
tested with the chromosome V NILs (Figure S6, File S10,
Table S4, and Table 2).

For traits in which the parental phenotypic difference was
significant and consistent across the NIL and CSS tests, NIL
and CSS phenotypes could be compared across assays. Eight
traits across five toxinsfit this criterion (File S12 and Table 4).
One trait (cisplatin.norm.n) displayed phenotypic recapitula-
tion of the introgressed region in both the NIL and the CSS
tests, suggesting a single-QTLmodel (Figure 4A and Table 4).
Alternatively, transgressive phenotypes are indicative of a
multi-QTL model, and locations of additive or interacting
QTL can be surmised by comparing results from the NIL
and CSS tests. Transgressive phenotypes controlled by inter-
chromosomal loci are defined by two loci on separate chromo-
somes that act additively or epistatically. Because NILs and CSSs
have introgressed genotypes on chromosome V, we can deduce
that at least one of the two interchromosomal loci is located on
chromosome V. We further divided the interchromosomal class
into two categories: “interchromosomal external,” in which the

Figure 2 Additive genetic components identified by linkage mapping do not explain all heritable contributions to toxin-response variation. For
47 principal components representing the 82 QTL, we compared (A) the broad-sense heritability (x-axis) calculated from the recombinant inbred
advanced intercross line phenotypic data vs. the narrow-sense heritability (y-axis) estimated by a mixed model, and (B) the narrow-sense heritability
(x-axis) vs. the variance explained by all QTL detected by linkage mapping (y-axis). In both plots, each principal component is plotted as a point whose
color indicates drug class (chemotherapeutic, heavy metal, neuropharmaceutical, or pesticide). The diagonal line represents y = x and is shown as a visual
guide.

1518 K. S. Evans et.al.

http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.wormbase.org/db/get?name=CB4856;class=Strain


chromosome V locus is outside the region introgressed in the
NILs (Figure 5A), and “interchromosomal internal,” in which
the chromosome V locus is within the region introgressed in the
NILs (Figure 5B). For an “interchromosomal external” model,
we expect only the CSSs to display hypersensitivity or hyper-
resistance, because both loci share the same genotype in the
NILs (Figure 5A) and would therefore not result in a more
extreme phenotype than both parents. We found one such trait
that fits a “bidirectional interchromosomal external” loci model
(silver.median.TOF) (Figure 4B and Table 4). For an “interchro-
mosomal internal” model, we expected both the CSSs and the
NILs to display the same hypersensitivity or hyperresistance,
because both strains share the same genotype across the intro-
gressed region in the NILs (Figure 5B). We identified one such
trait that fits a “unidirectional interchromosomal internal” loci
model (carmustine.median.EXT) (Figure 4C and Table 4). To
identify intrachromosomal loci that underlie transgressive phe-
notypes in the remaining 10 traits, we searched for traits that
display evidence of either a uni- or bidirectional transgressive
phenotype in the NILs but not in the CSSs (Figure 5C). This
result would suggest that two loci of opposite genotypes on
chromosome V, one within and one outside the region intro-
gressed in the NILs, act additively or epistatically to cause trans-
gressive phenotypes. We found two examples of such
“unidirectional intrachromosomal” loci models (e.g., cis-
platin.q90.EXT, Figure 4D and Table 4). The remaining three
traits could not be characterized beyond their NIL assay char-
acterization based on the results of the CSS assay (Table 4).

We revisited the two-factor genome scan results for each of
these eight empirically classified traits and compared the
findings from these two independentmethodsused to identify
multiple additive or epistatic QTL. No traits with significant
interaction terms were identified by the two-factor genome
scan. Although many other pairs of loci show suggestive
evidence of additive or interacting effects (File S5), an in-
crease in statistical power is required to definitively compare
these suggestive findings to our empirically derived model.
Overall, this study highlights the benefits of leveraging both

experimental and computational strategies to further dissect
genetic components that underlie quantitative traits in a
metazoan model.

Discussion

Here,we show that threeQTLhotspots underlie differences in
responses to 16 diverse toxins.We further characterized these
QTL using bothmodeling and empirical approaches. Through
the use of NILs and CSSs, we confirmed small-effect QTL, and
attempted to identify and localize genomic regions causing
transgressive phenotypes. Finally, we used statistical analyses
to computationally identify loci that might support some of
our empirical findings. Although the number of biological
replicates and recombinant strains in this study increased our
power to detectQTL compared to previous studies,we are still
too underpowered to definitively assess if missing heritability
is composed of small additive effects or genetic interactions.

Pleiotropic regions underlie QTL shared between and
among toxin classes

We performed PC analysis on toxin-response phenotypes
collected for a panel of RIAILs and used linkage mapping to
identify 82 toxin-response QTL. Although some of these QTL
areunique tooneparticular toxin,others suggest theexistence
of pleiotropic QTL that underlie responses to a diverse set of
toxins. In particular, three QTL hotspots across chromosomes
IV and V were enriched for toxin-response QTL, and were
investigated further. Because the molecular mechanisms im-
plicated in responses to each toxindiffer drastically, thenotion
that a single gene in each hotspot is regulating the response to
several toxins is unlikely. However, the possibility exists that a
single gene involved in drug transport could underlie one or
several of these hotspots. More likely, multiple genes in close
proximity, each regulating a process controlling cellular pro-
liferationandsurvival,mightunderlie thesehotspots.Notably,
two of the three QTL hotspots are in swept regions with lower
genetic diversity at the species level (Andersen et al. 2012;

Figure 3 Three QTL hotspots impact toxin responses. Each chromosome is divided into equal bins of 26 cM, resulting in a total of 65 bins across the
genome. The x-axis shows the genomic position (Megabase) and the y-axis shows the number of QTL that lie within the corresponding bin. The red line
indicates the 99th percentile of a Poisson distribution with a mean of 1.26 QTL (total QTL/total bins).
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Cook et al. 2016, 2017; Laricchia et al. 2017). The laboratory
strain, N2, has experienced each of the selective sweeps, and
CB4856 has not. Linkage mapping using a panel of RIAILs
built between these two strains could identify QTL that un-
derlie phenotypic differences between swept and nonswept
strains. Moreover, identifying QTL in these swept regions that
underlie variation in fitness-related traits might indicate se-
lective pressures that could have led to these chromosomal
sweeps. For example, N2 is more resistant than CB4856 to
tunicamycin (Figure S6), an antibiotic and chemotherapeutic
produced by the soil bacterium Streptomyces clavuligerus
(Price and Tsvetanova 2007). This result might suggest that
selective pressure toward responses to antibiotic compounds
played a role in driving resistance-conferring alleles, such as

those present in N2, to a high frequency. Alternatively, cli-
mate conditions could also impact local niche environments
to sensitize toxin responses (Evans et al. 2017). We observed
that N2 is more resistant than CB4856 in responses to the
majority of conditions, which could indicate that alleles pre-
sent in swept strains confer robustness in responses to many
conditions. This result emphasizes the importance of genetic
background when considering toxin effects (Zdraljevic and
Andersen 2017).

In addition to the three QTL hotspots, pleiotropic QTL
across toxins within certain classes are suggested by our
linkage mapping results. We observed an enrichment of
QTL fromthechemotherapeutic classonchromosomeI,which
could be representative of QTL that underlie a common

Figure 4 Results from NIL and CSS tests
of recapitulation of QTL effects are cat-
egorized based on potential genetic
mechanisms implicated in toxin re-
sponses. A trait contributing to a
mapped PC for each category is reported:
(A) Recapitulation (cisplatin norm.n, PC4),
(B) interchromosomal external bidirec-
tional loci (silver median.TOF, PC1), (C)
interchromosomal internal unidirectional
loci (carmustine median.EXT, PC1), and
(D) intrachromosomal unidirectional loci
(cisplatin q90.EXT, PC1). In each case,
we show results from (i) the NIL assay
(left) and CSS assay (right) plotted as
Tukey box plots. The y-axis indicates re-
sidual phenotypic values for the given
trait. Different letters (a–d) above each
Tukey box plot represent significant dif-
ferences (P, 0.05), while the same letter
represents nonsignificant differences be-
tween two strains (Tukey’s honest signif-
icant difference). The genotype of each
strain on the x-axis is modeled by the col-
ored rectangles beneath the plots (N2
genotypes are orange and CB4856 ge-
notypes are blue). (ii) A stacked bar plot
shows the proportion of phenotypic vari-
ation attributable to additive (light blue
with dashed error bars) and interactive
(dark blue with solid error bars) genetic
factors of the PC represented by each
trait, based on a mixed model. Chr, chro-
mosome; CSS, chromosome substitution
strain; EXT, extinction; NIL, near-isogenic
line; PC, principal component; TOF, time
of flight; VE, variance explained estimate.
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mechanism targeted by these toxins, such as DNA damage or
cell-cycle control. However, because many of these chemo-
therapeutics have distinct mechanisms of action and share
these mechanisms with other toxin classes, this enrichment is
likely caused by an overrepresentation of chemotherapeutics
in our study. Direct comparisons of toxins with similar cellular
mechanisms could provide more insights. For example, irino-
tecan and topotecan are both chemotherapeutics that cause
DNA damage by inhibiting topoisomerase I (Pommier 2006),
and share a QTL on the center of chromosome I. However,
each of these chemotherapeutics alsomaps to distinct regions
of the genome. For example, the irinotecan-response QTL on
the right arm of chromosome V is not mapped for topotecan
response and the topotecan-response QTL on the left arm of
chromosome II is not mapped for irinotecan response. Vin-
cristine also maps to this same region; however, its mecha-
nism of action is distinct from irinotecan and topotecan. The
combination of overlapping and distinct genetic architec-
tures underlying these highly similar compounds suggest that
although some genetic variation implicated in responses to iri-
notecan and topotecan is shared, other QTL are specific to each
compound and not representative of a general topoisomerase I
inhibitionmechanism.We have also observed this phenomenon
of distinct genetic architectures underlying similar compounds
for benzimidazole responses (Zamanian et al. 2018).

A multi-faceted approach suggests that undetected
epistatic loci impact toxin responses

To determine if we had sufficient power to experimentally
validate even small-effect QTL, we constructed NILs for the

three hotspots and assayed them in responses to multiple
toxins. Because each PC comprises multiple toxin-response
traits, we measured NIL phenotypes for the most correlated
toxin-response traits for each PC to test recapitulation of QTL
effects. For some of these tests of recapitulation for small-
effect QTL, NILs showed a significant phenotypic effect. One
such example is cisplatin.norm.n and cisplatin.n, which rep-
resent the QTLmapped by cisplatin.PC4 that only explain 7%
of the phenotypic variance. Our ability to recapitulate such a
small effect suggests that our assay had sufficient power to
detect small phenotypic effects in at least some cases. We
postulated that our inability to recapitulate other QTL effects
could be attributed to either insufficient power or additional
additive or epistatic QTL that were undetected by linkage
mapping. Particularly in caseswhere theNILs displayed trans-
gressive phenotypes, undetected loci of opposite genotypes,
acting additively or epistatically, likely caused these effects.
Therefore, we investigated these interactions and found ev-
idence for additional QTL that interact with the originally
detected loci. However, we must note that whole-genome
sequence data revealed that three of our NILs had a portion of
the genome from the background of the starting RIAIL (File
S7). Although we do not believe that these small regions are
responsible for the unexpected phenotypes observed, this
explanation could be a consideration for certain silver, cis-
platin, carmustine, and chlorothalonil PCs, as they have
significant QTL in these identified regions. This example
emphasizes the importance of whole-genome sequencing
NILs to verify the expected genotypes before making conclu-
sions about phenotypic effects of a targeted QTL.

Figure 5 A model for potential locations of two loci is shown, according to toxin-response phenotypes of near-isogenic lines (NILs) and chromosome
substitution strains (CSSs). The NILs are represented on the left and the CSSs are represented on the right. The strain genotype is indicated by colored
rectangles. N2 is orange and CB4856 is blue. Brackets indicate the genomic region that is introgressed in the NILs. White asterisks represent a potential
location for additive or epistatic loci underlying transgressive phenotypes. Although bidirectional transgressive phenotype models are shown, each
model could be bidirectional (both reciprocal introgressed strains show transgressive phenotypes) or unidirectional (only one reciprocal introgressed
strain shows a transgressive phenotype). Models showing (A) interchromosomal external effects between a locus outside of the introgressed region in
the NILs and a locus on another chromosome, (B) interchromosomal internal effects between a locus within the introgressed region in the NILs and a
locus on another chromosome, and (C) intrachromosomal effects between a locus within and a locus outside of the introgressed region in the NILs are
drawn.
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Weused the results from theNIL assays to classify each test
into a category that predicts a genetic model that might
underlie NIL phenotypes. Categorizations were consistent
across traits representing a PC,withmost of these traits falling
intooneor a fewcategorizations. Thiswidespread consistency
suggests that similar genetic architectures underlie pheno-
types for these grouped traits. Furthermore, this consistency
highlights the reproducibility of our high-throughput toxin-
response assay, because results from independent assays
(trait correlations, linkage mappings from RIAIL assays,
and phenotype classifications from NIL assays) often align
to support the same conclusion obtained from the individual
experiments.

The majority of cases of transgressive phenotypes occur
when the N2 genotype is introgressed into the CB4856 ge-
nome. This trend might indicate allele-specific unidirectional
incompatibilities between the two strains, and localizing
these interactions could improve our understanding of the
evolutionary processes driving such incompatibilities. How-
ever, identifying the loci that underlie these unidirectional
transgressive phenotypes using a mixed-effect model or a
two-factor genomic scan is difficult, because only a small
number of the RIAILs have the required allelic combinations
to quantify such an effect. For example, cisplatin.q90.EXT, a
trait chosen to represent cisplatin PC1, fits a unidirectional
intrachromosomal model. The results of the NIL and CSS
assays show that, although the CSSs seem to display no
QTL effect, the NIL with the N2 genotype introgressed into
the CB4856 genome displays strong hypersensitivity (Figure
4D). All of the narrow-sense heritability for cisplatin PC1
(25%) predicted by the mixed-effect model is explained by
the three QTL identified through linkage mapping (the vari-
ance explained estimates of these three QTL add up to 26%,
File S5 and File S7). This finding suggests that most of the
additive loci have been identified through linkage mapping.
Therefore, the intrachromosomal loci are likely acting epis-
tatically to cause a unidirectional transgressive phenotype.
However, using our mixed-model approach, we do not find
a significant interaction component for cisplatin PC1, the PC
that is represented by cisplatin.q90.EXT. A two-dimensional
genome scan for multiple loci that underlie cisplatin PC1
provides suggestive evidence for a two-QTL model over
a one-QTL model, with or without interaction between
the loci (File S6). These two loci are located on the left of
chromosome V (outside the NIL interval) and in the center of
chromosome V (inside the NIL interval), and match our em-
pirical evidence of two intrachromosomal loci underlying
the transgressive phenotype observed (Figure 5C). Because
the transgressive phenotype is unidirectional, RIAILs without
the allelic combination that causes extreme phenotypes could
dilute our power to detect the loci. For this reason, combining
both computational models and empirical investigation facil-
itates the detection of loci that control transgressive pheno-
types. Additionally, future studies should include even larger
RIAIL panels than what we used here to empower approaches
to investigate the contributions of interactive loci.

Although we are statistically underpowered to identify
some small-effect additive and interacting loci through mod-
eling, the combination of three methods of searching for
potential interactions suggests that not all fitness traits in
C. elegans are composed of additive effects. Our two compu-
tational methods were used to identify additive and epistatic
loci underlying many toxin responses, but their power was
limited in cases of unidirectional transgressive phenotypes.
Alternatively, the NIL and CSS phenotypic assays were able to
identify unidirectional transgressive phenotypes, but they
were restricted by their inability to distinguish between ad-
ditive and epistatic loci. Constructing double CSS strains or
multi-region NILs in which pairwise combinations of two ge-
nomic regions are introgressed within the opposite genotype
could help to further define loci underlying transgressive
phenotypes. However, each locus must be isolated to deter-
mine if the two loci act additively or epistatically. The results
from the two-dimensional genome scan might provide in-
sights into where to begin this approach. In cases where all
three of our techniques suggested epistasis, we suspect that
these QTL are not purely additive. Generating an even larger
panel of recombinant strains and assaying a much larger
number of biological replicates might allow us to further ad-
dress the debate about how heritable loci contribute to trait
variation in metazoans.
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