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To maximize reproductive success, organisms must respond to 
changing environmental conditions. In a fluctuating environ-
ment, each response will likely have a fitness trade-off with 

reproductive success now or in the future. Caenorhabditis elegans 
can either grow to a reproductive adult in three days or delay matu-
rity for months by entering the dauer diapause stage1. Food sup-
ply and pheromone signals act oppositely to promote either further 
reproductive growth or the development of a stress-resistant and 
long-lived dauer stage2,3. C. elegans secretes sugar-based pheromone 
compounds called ascarosides4, and individuals must measure the 
amount of remaining food and the ascaroside pheromones to deter-
mine whether it is advantageous to continue reproductive growth 
or to enter the dauer stage, disperse and hopefully encounter a 
new food source. Therefore, dauer formation decreases reproduc-
tive success in the short term in favour of future survival success. 
Decades of research have provided insights into the chemical and 
genetic bases of the dauer-pheromone response5. However, most 
studies used a single laboratory-adapted strain (N2), which has lim-
ited our understanding of the natural processes that have shaped the 
dauer-pheromone response.

After decades of focused laboratory research on C. elegans as a 
model organism, the natural history of this species has only recently 
been described from extensive field research6. These field studies 
have revealed that the dauer stage is important for the population 
dynamics in their natural habitat7. These dynamics are typified by a 
boom phase after the initial colonization of a nutrient-rich habitat, 
followed by a bust phase when resources are depleted. At the end of 

the boom phase when the local population size is large and nutrients 
are limited, individual animals enter the dauer stage. Dauers exhibit 
a stage-specific behaviour called nictation, which facilitates inter-
specific interactions between dauer larvae and more mobile animals 
to disperse to favourable environments8,9. Because dauer larvae are 
presumed to play a crucial role in the survival and dispersal of the 
species, it is likely that the genetic controls of dauer formation are 
under natural selection. Although differences in dauer develop-
ment among a small number of wild C. elegans strains have been 
described previously10–15, no underlying natural genetic variant has 
been identified. Here, we integrate laboratory experiments, compu-
tational genomic analyses and field research to further our under-
standing of the genetic basis underlying intraspecific variation in 
pheromone-mediated developmental plasticity. We identify natural 
genetic variation in responses to dauer pheromones and character-
ize a pheromone receptor allele that has spread around the globe.

Results
Natural variation of the dauer-pheromone response was mea-
sured using a high-throughput dauer assay. To explore the effects 
of natural genetic variation on the ability to enter the dauer stage, 
we developed a high-throughput dauer assay (HTDA) to quantify 
the dauer-pheromone responses of wild C. elegans strains. The 
HTDA takes advantage of the observation that dauer larvae have no 
pharyngeal pumping16. We treated animals with fluorescent micro-
spheres that can be ingested, and we then quantified both the fluo-
rescence and size of individual animals using a large-particle flow 
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cytometer (COPAS BIOSORT, Union Biometrica). These data facili-
tated computational classification of dauers (Fig. 1a,b and Methods) 
and recapitulated the known differences in the dauer-pheromone 
responses between N2 and a constitutive dauer mutant (Daf-c), daf-
2(e1370), as well as the dauer-inducing effect of synthetic phero-
mone (Fig. 1b,c). To determine whether genetic variation within  
C. elegans causes differential dauer-pheromone responses, we 
applied the HTDA to four genetically divergent C. elegans strains 
after treatment with various concentrations of three known dauer-
inducing synthetic ascarosides (ascr#2, ascr#3 and ascr#5). We 
found significant variation in the dauer-pheromone responses 
among the strains tested, as measured by the fraction of individu-
als that entered the dauer stage (Fig. 1d and Supplementary Fig. 1). 
Among the conditions we tested, we found that 800 nM ascr#5 max-
imizes the among-strain variance and minimizes the within-strain 

variance in the dauer-pheromone response. These results enabled 
us to survey the effects of genetic variation on the dauer-pheromone 
response across C. elegans.

Genome-wide association mapping reveals multiple loci under-
lying natural variation in the ascr#5 response. Next, we quantified 
dauer induction of 157 wild strains that have been isolated from 
diverse habitats across six continents (Supplementary Fig. 2)17,18. 
We found significant variation in the ascr#5 response with a broad-
sense heritability estimate of 0.29 (H2, s.e.m. = 0.14) and a narrow-
sense heritability estimate of 0.18 (h2, s.e.m. = 0.12) (Fig. 2a and 
Methods). The two strains that represent the phenotypic extremes 
of the ascr#5 response are EG4349 and JU2576: EG4349 did not 
enter dauer and was completely insensitive to ascr#5 treatment, and 
a large fraction of the JU2576 individuals entered the dauer stage 
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Fig. 1 | An HtDA measures the natural variation of the dauer-pheromone response. a, The workflow for the HTDA using a COPAS BIOSORT (see Methods  
for further description). G, generation. The bottom plot shows relative animal length measured by time-of-flight (µm) on the x axis and bead-derived 
green fluorescent intensity (arbitrary units, a.u.) on the y axis. Animal size and fluorescence-intensity traits are used as variables to build a model that 
differentiates dauer (blue) and non-dauer (orange) populations. Each point corresponds to the measurement of an individual animal, coloured by the 
stage. b, Measurements of the laboratory wild-type strain (N2) (top) and a Daf-c mutant, daf-2(e1370) (bottom), are shown under control (left) and 
pheromone-treated (ascr#5 800 nM) conditions (right) at 25 °C using the HTDA. Animal size and fluorescence-intensity traits are used as variables to 
build a model that differentiates dauer (blue) and non-dauer (orange) populations. Relative animal length measured by time-of-flight (µm) is shown on 
the x axis, and bead-derived green fluorescent intensity (arbitrary units, a.u.) is shown on the y axis. c, Tukey box plots of the dauer fraction quantification 
from b are shown with data points plotted behind. Box plots are coloured by assay conditions (control (red) and ascr#5 800 nM treatment (blue)). The 
genotypes are shown on the x axis, and fractions of dauer larvae are shown on the y axis. d, Tukey box plots of the ascr#5 dose response at 25 °C for four 
divergent strains are shown with data points plotted behind. In c and d, the horizontal line in the middle of the box is the median, and the box denotes the 
25th to 75th quantiles of the data. The vertical line represents 1.5× interquartile range.

NAtuRE ECoLoGy & EvoLutioN | VOL 3 | OCTOBER 2019 | 1455–1463 | www.nature.com/natecolevol1456

http://www.nature.com/natecolevol


ArticlesNATure ecoLogy & evoLuTIoN

in the same condition. Overall, we observed a continuous distri-
bution of dauer-pheromone responses among these wild strains 
(mean = 0.41, s.d. = 0.20), indicating that natural variation in this 
trait is likely not explained by a single gene.

To characterize the quantitative trait loci (QTL) associated 
with variation in the ascr#5 response, we performed genome-wide 
association (GWA) mappings and identified four QTL (Fig. 2b,c). 

The QTL that explained the most variation in pheromone-induced 
dauer induction (15.9%) is on the right arm of the X chromo-
some. Strains that have the non-reference (ALT) allele at the peak 
marker (X:14145335) of this QTL were less responsive to ascr#5 
treatment than strains that have the reference (REF) allele (REF 
mean: 0.46; ALT mean: 0.30; log(P) = −5.851505). The remain-
ing QTL on chromosomes II, III and IV explain 8.4%, 15.1% and 
5.4% of the variation in the ascr#5 response, respectively. Because 
population structure can drive the mapping of loci that are in 
interchromosomal linkage disequilibrium (LD) with causal QTL, 
we checked the LD among the four QTL. We did not detect any 
obvious LD among these QTL (Supplementary Fig. 3), suggesting 
that multiple independent genomic loci underlie natural variation 
in the ascr#5 response.

A putative loss-of-function allele in an ascr#5 receptor gene is 
associated with reduced dauer formation. We focused our efforts 
on the QTL with the largest effect, which we named dauf-1 (dauer-
formation QTL #1). The 469 kb surrounding the dauf-1 peak marker 
contains 82 protein-coding genes (Supplementary Fig. 4), including 
the duplicated genes srg-36 and srg-37, which encode ascr#5 recep-
tors19. Both genes are expressed in the same pair of chemosensory 
neurons (ASI), which play an essential role in the dauer-pheromone 
response20,21. Previous studies reported that both srg-36 and srg-37 
are repeatedly deleted during long-term propagation of two inde-
pendent laboratory-domesticated C. elegans lineages in high-den-
sity liquid cultures19.

To evaluate whether similar mutations in these two genes under-
lie the dauf-1 QTL, we investigated the genome sequences of 249 
wild strains available through the C. elegans Natural Diversity 
Resource (CeNDR)22,23. Although we could not find a large deletion 
that removes both srg-36 and srg-37, we found only one strain with 
a 411-base-pair (bp) deletion in srg-36 and many other strains with 
an identical 94-bp deletion in srg-37 (Fig. 3a and Supplementary  
Fig. 5). We named these deletions srg-36(ean178) and srg-
37(ean179). To test whether these deletions can explain the dauf-1  
QTL effect, we analysed the association between the ascr#5 response 
and the two deletions. First, we found that srg-36(ean178), which is 
a deletion found only in the PB303 strain and removes the fourth 
and fifth exons, is associated with an insensitivity to a high dose of 
ascr#5 (2 µM) (Supplementary Fig. 6). Because this deletion allele 
was not found in any other wild strains, srg-36(ean178) cannot 
explain the population-wide differences in dauer formation. By con-
trast, we found that all wild strains with the srg-37(ean179) deletion 
belong to the dauf-1(ALT) group and had reduced ascr#5 sensitivity  
(Fig. 3b; Welch’s t-test, P = 3.152 × 10−6), suggesting that this dele-
tion allele might cause a reduction in the acr#5 response.

The srg-37(ean179) deletion removes 31 amino acids surround-
ing the pocket structure of the G protein-coupled receptor and 
causes a frameshift mutation for the 46 C-terminal amino acids, 
together removing 23% (77/324) of the predicted SRG-37 amino 
acid sequence. Thus, this deletion likely impairs SRG-37 function, 
which could cause lower ascr#5 sensitivity. We hypothesized that, if 
srg-37(ean179) causes loss of gene function, removal of additional 
srg-37 coding sequences would not further reduce the ascr#5 sen-
sitivity of srg-37(ean179) wild strains. Using clustered regularly 
interspaced short palindromic repeats and CRISPR-associated pro-
tein 9 (CRISPR–Cas9) genome editing24,25, we removed most of the 
coding sequences of srg-37 from wild strains with both wild-type 
(reference-like) srg-37 and the natural srg-37 deletion (Fig. 3a).  
We observed that a large deletion in srg-37 did not change the 
ascr#5 sensitivities of two wild isolates with the natural deletion, but 
reduced the ascr#5 sensitivities of five wild isolates with reference-
like srg-37 (Fig. 3c and Supplementary Fig. 7), indicating that the 
natural deletion is likely a loss-of-function allele. Taken together, 
these results show that deletion of an ascr#5 receptor gene underlies  
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Fig. 2 | GWA mapping reveals four major loci underlying natural variation 
in the dauer-pheromone response. a, A bar plot for the natural variation 
of ascr#5-induced dauer formation at 25 °C across 157 C. elegans wild 
isolates (one-way analysis of variance, log(P) = −49.6598). Each bar 
represents the phenotypic response of a single wild isolate to 800 nM 
ascr#5. b, A Manhattan plot for single-marker-based GWA mapping of 
the ascr#5-induced dauer formation trait from a. Each dot represents a 
single-nucleotide variant (SNV) that is present in at least 5% of the 157 
wild strains. The genomic position in Mb, separated by chromosome, is 
plotted on the x axis, and the statistical significance of the correlation 
between genotype and phenotype is plotted on the y axis. Two significance 
thresholds are shown. The dashed horizontal line denotes the Bonferroni-
corrected P value threshold using all markers, and the solid horizontal line 
denotes the Bonferroni-corrected P value threshold using independent 
markers correcting for LD (genome-wide eigen-decomposition significance 
threshold). SNVs are coloured red if they pass the second threshold. The 
region of interest for each QTL is represented by vertical blue dashed lines. 
c, Tukey box plots of phenotypes split by peak marker position of the four 
QTL. Each dot corresponds to the phenotype of an individual strain, which 
is plotted on the y axis as the normalized dauer fraction phenotype. Strains 
are grouped by their genotype at each peak QTL position, where REF (blue) 
corresponds to the reference allele from the laboratory N2 strain and ALT 
(red) corresponds to the alternative allele. The horizontal line in the middle 
of the box is the median, and the box denotes the 25th to 75th quantiles of 
the data. The vertical line represents 1.5× interquartile range.

NAtuRE ECoLoGy & EvoLutioN | VOL 3 | OCTOBER 2019 | 1455–1463 | www.nature.com/natecolevol 1457

http://www.nature.com/natecolevol


Articles NATure ecoLogy & evoLuTIoN

natural variation in the dauer-pheromone response across the  
C. elegans population.

Selection has shaped the genetic variation of the two duplicated 
C. elegans ascr#5-receptor genes. We performed population genetic 
analysis across the srg-36 and srg-37 region by analysing the genome 
sequences of 249 wild strains. Natural selection and demographic 
change can shift the allele frequency spectrum from neutrality, as 
measured by Tajima’s D26. Purifying selection, a selective sweep or a 
recent population expansion can cause accumulation of rare alleles 
at a given locus, indicated by a negative Tajima’s D value. We found 
that the Tajima’s D values were lowest across the promoter and cod-
ing regions of srg-36 and increased back to background neutrality 
rates in the promoter region of srg-37 (Fig. 3d and Supplementary 
Fig. 8). Differences in deletion allele frequencies between srg-36 and 
srg-37 suggest stronger purifying selection at srg-36. The 411-bp 
deletion allele, srg-36(ean178), is found only in a single wild isolate 
(PB303), whereas 18.4% (46/249) of wild isotypes (genome-wide 
genotypes) carry the 94-bp deletion allele, srg-37(ean179).

Although srg-36 and srg-37 are duplicated genes that are acti-
vated by the same ligand and are expressed in the same cells, differ-
ences in non-coding and coding sequences between the two genes 
can cause differences in gene expression levels and receptor activi-
ties. Previous studies report that transgene expression of srg-36 
showed a stronger effect than srg-37 on the ascr#5 response19. To test 
whether srg-36, which is likely under stronger purifying selection 
than srg-37, plays a larger role in the ascr#5 response, we performed 
loss-of-function experiments. We removed the entire srg-36 coding 
region in two wild strains: JU346 with wild-type (reference-like) 
srg-37 and NIC166 with the natural srg-37 deletion (Supplementary 
Fig. 5). We found that the loss-of-function allele, srg-36(lf), reduced 
ascr#5 sensitivity of both strains, indicating that srg-36 is functional 
in both genetic backgrounds (Fig. 3e). We also observed that the 
loss of srg-36 reduced ascr#5 sensitivity more than the loss of srg-37, 
supporting the conclusion that srg-36 plays a larger role than srg-37 
in the ascr#5 response.

The higher activity of srg-36 could be explained by differences 
in gene expression levels. We investigated the relative levels of  
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srg-36 and srg-37 at the first larval stage (L1), when these genes 
play critical roles in the dauer-pheromone response, and found 
that the expression levels of both genes are not significantly differ-
ent (Supplementary Fig. 9; paired t-test, P = 0.1981; Methods). It is 
more likely that differences in protein-coding sequences cause the 
functional differences in the ascr#5 response. Although SRG-36 
and SRG-37 show similarities in size and transmembrane structures 
(Supplementary Fig. 10)27, only 46.4% of the amino acid residues 
are conserved between both receptors. The molecular differences 
between the two ascr#5 receptors could cause quantitative differ-
ences in ascr#5-receptor activities. We therefore hypothesized that 
srg-36 is the primary ascr#5-receptor gene and is maintained across 
C. elegans through purifying selection. By contrast, the redundancy 
of these two genes might allow srg-37 variation, and a loss-of-func-
tion allele can arise and spread across the population.

The srg-37 deletion has spread globally and outcrossed with 
diverse genotypes. We investigated the locations where wild strains 
with the natural srg-37 deletion were isolated and found that 46 
wild isotypes with this allele were isolated from all six continents 
(Fig. 4a,b). Given the low probability of acquiring the same 94-bp 
deletion, we hypothesized that this allele did not independently 
arise across multiple global locations but originated from a single 
ancestral population and spread throughout the world. To test this 
hypothesis, we analysed the haplotype composition of C. elegans 
wild isolates across the X chromosome. We reproduced previous 

studies that showed a recent global selective sweep on the X chro-
mosome (Supplementary Figs. 11 and 12)28. We found that all 46 
isotypes with the srg-37 deletion exclusively share the swept haplo-
type at the srg-37 locus (Fig. 4c). By contrast, none of 203 isotypes 
with wild-type srg-37 carries the swept haplotype at the srg-37 locus. 
This result not only demonstrates that this allele arose at a single 
location, but also implies that it has spread throughout the world 
along with the recent selective sweep. Because the srg-37 locus is far 
from the most swept part of the X chromosome, many strains must 
have outcrossed, suggesting that srg-37 is unlikely the driver of the 
X chromosome sweep. Specifically, we found that 34.1% (85/249) of 
wild isotypes have an X chromosome that is swept more than 50% 
of its length but have diverse non-swept haplotypes at the srg-37 
locus (Supplementary Fig. 13). Additionally, the genome-wide tree 
of 249 wild C. elegans isotypes shows that the srg-37 deletion is not 
present in many subpopulations (Fig. 4d). These results suggest that 
the srg-37 deletion spread globally with the selective sweeps but has 
been purged after more recent outcrossing.

Two different srg-37 genotypes coexist and associate with differ-
ent niches. These signatures of multiple outcrossing events imply 
the co-occurance of wild strains with and without the srg-37 dele-
tion in the same habitats. Indeed, we found that many local popu-
lations across the world harbour distinct individuals with either 
the wild-type srg-37 or the deletion allele (Supplementary Fig. 14; 
see Methods). Because each genotype can be adaptive to different 
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Each row is one of the 46 isotypes, ordered roughly by the extent of swept-haplotype sharing (red). Other haplotypes are coloured grey. The genomic 
position on the X chromosome is shown on the x axis. The blue line shows the position of the srg-37 locus. d, The genome-wide tree of 249 C. elegans wild 
isolates with those strains that have the srg-37 deletion shown in red. e, Stacked bar plots of srg-37(+) and srg-37(ean179) allele frequencies among three 
subpopulations that were sampled from different substrates across a hybrid zone in Europe (see Methods).
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environmental conditions, we analysed the allele frequencies of the 
srg-37 deletion among three subpopulations sampled from animals, 
compost and rotting fruits across geographic locations where both 
srg-37 alleles were isolated. Because reduction of the dauer-phero-
mone response can promote reproductive growth, we investigated 
whether wild strains with the srg-37 deletion were sampled more 
often from substrates with proliferating populations. These popu-
lations are often found in nutritious habitats, such as rotting veg-
etation29. By contrast, C. elegans were sampled predominantly in 
the dauer stage from animal and compost substrates6,30. We found 
that wild strains with the srg-37 deletion were 67% enriched in 
rotting fruits (Fig. 4e and Supplementary Data 1; hypergeometric 
test, P = 0.0026). Thus, this allele is associated not only with lower 
dauer-pheromone responses but also with natural substrates that 
are known to support reproductive growth. We also analysed FST 
statistics of the entire X chromosome for subpopulations from dif-
ferent substrates across shared geographic regions. Consistent with 
the niche association pattern of srg-37 genotypes, we found the 
highest genetic divergence between the subpopulation from rotting 
fruit and the subpopulation from animal substrates at a genomic 
locus around the srg-37 gene (Supplementary Fig. 15).

Discussion
Dauer pheromones are chemical signals that are perceived by 
sensory neurons using chemoreceptors and cyclic guanosine 
monophosphate-mediated signalling5,31. In the absence of dauer-
pheromone signalling, the insulin/insulin-like growth factor 1 and  
transforming growth factor beta signalling pathways promote 
reproductive growth through the production of steroid hormones 
(dafachronic acid)32. Genetic variation in the genes that medi-
ate pheromone perception or downstream signalling likely alter 
an individual’s dauer-pheromone response. However, because the 
signalling pathways that act downstream of pheromone percep-
tion are involved in various biological processes33,34, mutations in 
these pathways might cause deleterious pleiotropic effects. Previous 
studies have shown that the ascr#5 receptors SRG-36 and SRG-37 
were lost in two independent laboratory lineages of C. elegans19, sug-
gesting that selection more readily acts at the pheromone percep-
tion step of this developmental pathway. In this study, we provide 
further support for this hypothesis by showing that 18% of wild  
C. elegans strains harbour a putative loss-of-function deletion in 
only the ascr#5 receptor SRG-37, and that these individuals are more 
likely to be found in nutrient-rich habitats. Modification of phero-
mone-receptor activity might thus be favoured in both laboratory 
and natural conditions to fine-tune dauer-pheromone responses 
with few pleiotropic effects19,35. However, we identified additional 
dauer-pheromone response QTL, suggesting that multiple loci are 
involved in ascr#5 responses. Interestingly, SRG-36 and SRG-37 are 
the only two known ascr#5 receptors involved in dauer-pheromone 
signalling. The presence of three additional ascr#5-response QTL 
suggests that natural genetic variants could affect uncharacterized 
ascr#5 receptors, novel or known factors that regulate receptor 
activity, or downstream signalling components.

Insights into the redundant functions of srg-36 and srg-37 were 
first gained from the observation that both genes were deleted from 
two independent laboratory-domesticated C. elegans lineages19. 
We did not find a single wild strain in the C. elegans population 
that carries a deletion of both srg-36 and srg-37. Investigations of 
neutrality statistics (Tajima’s D) suggest that selection acts on these 
two genes differently. Our results indicate that the srg-36 and srg-37 
genes might not be functionally equivalent in the wild population. 
The loss-of-function experiments suggest that srg-36 plays a larger 
role in the ascr#5 response than srg-37. Substantial differences in 
amino acid sequences between SRG-36 and SRG-37 suggest that 
the SRG-37 protein is likely to have less ascr#5 binding affin-
ity or weaker signal transduction activity than SRG-36. It is also 

possible that redundancy between SRG-36 and SRG-37 has been 
reduced since the time of gene duplication, and SRG-37 could gain 
sensitivities to other ascarosides while SRG-36 has maintained its 
ascr#5 specificity. Given the important role of the dauer stage in the 
long-term survival and dispersal of the species, purifying selection 
might act to conserve the primary ascr#5 receptor (SRG-36) in the 
C. elegans population to maintain the responsiveness to the dauer-
inducing pheromone ascr#5.

In contrast to the rare deletion of srg-36, we identified a com-
mon deletion allele (18% allele frequency) of srg-37 in the global  
C. elegans population. We discovered that strains harbouring differ-
ent srg-37 genotypes (wild-type and deletion) have been found often 
in close proximity at various locations across the world, suggesting 
that balancing selection might have maintained both genotypes in 
local habitats. Previously, features of balancing selection were also 
reported for a locus with other pheromone-receptor genes (srx-43 
and srx-44) that underlie differences in C. elegans density-depen-
dent foraging behaviour36,37. Differences in food distribution can 
exert bidirectional fitness effects on foraging behaviour. Similar to 
these effects, dauer formation can be disadvantageous during the 
population growth phase (boom phase) but beneficial during the 
dispersal phase (bust phase). Therefore, we hypothesize that the 
loss of srg-37, which reduces dauer formation, has trade-off effects 
between the boom and bust phases. Niche association patterns 
of srg-37 genotypes support this hypothesis. We found that wild 
strains with the srg-37 deletion are enriched in a rotting fruit niche, 
where ample bacterial food can support population growth during 
the boom phase. By contrast, the srg-37 deletion is not enriched in 
wild strains isolated from animal carriers, which is consistent with 
known behavioural ecology during the bust phase when dauer lar-
vae can readily hitchhike on other animals for their dispersal6,8,9. 
Our FST analysis also demonstrated significant genetic divergence 
at the srg-37 locus between wild strains isolated from rotting fruit 
and those isolated from animal carrier substrates. These observa-
tions suggest that the boom-and-bust population dynamics in wild 
habitats likely drive balancing selection of srg-37.

Population genomic analyses of the srg-37 locus imply that the 
srg-37 deletion arose recently and balancing selection might have 
occurred only for a short period. We found that strains with the  
srg-37 deletion all share the same swept haplotype at the srg-37  
locus, which is estimated to have spread worldwide in the last 
few centuries28. Because mutation and recombination decrease LD 
between a selected allele and the surrounding variants over time, this 
haplotype homogeneity suggests that the deletion allele arose recently. 
Moreover, we found no genomic signatures of long-term balancing 
selection. Tajima’s D statistics for the srg-37 locus did not show typi-
cal features of long-term balancing selection (that is, D was not much 
greater than 0). We also found that genetic diversity (π) is reduced 
at the srg-37 locus in strains that carry the srg-37 deletion compared 
to strains that carry the srg-37(+) wild-type allele (Supplementary  
Fig. 16). This result is a signature of a recently established balanced 
situation38. We hypothesize that this recent balancing selection is 
related to human activities, which were also suggested to be drivers 
of the recent global selective sweeps28. Agriculture could have pro-
vided nutritious niches and therefore expanded boom phases spatio-
temporally, which is likely to cause an increase in selective pressures 
to maintain the srg-37 deletion. Furthermore, human migration 
could facilitate the worldwide gene flow of the srg-37 deletion allele. 
Our study implies that human civilization might exert a large impact 
on the natural selection and evolution of wild species.

Methods
C. elegans strains. Animals were cultured at 20 °C on modified nematode growth  
medium seeded with the Escherichia coli strain OP5039. Before each assay, 
strains were passaged for at least four generations without entering starvation or 
encountering dauer-inducing conditions. For the GWA studies, 157 wild isolates 
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from CeNDR (version 20170531) were used22,23. All strain information can be 
found in Supplementary Data 2.

High-throughput dauer assay. Strains were propagated for four generations 
on agar plates, followed by bleach synchronization. Approximately 50 embryos 
were titred and placed into each well of a 96-well microtitre plate filled with 
50 μl of K medium40 with modified salt concentrations (10.2 mM NaCl, 32 mM 
KCl, 3 mM CaCl2, 3 mM MgSO4), 50 μM kanamycin, 5 mg ml−1 HB101 bacterial 
lysate (Pennsylvania State University Shared Fermentation Facility) and synthetic 
ascaroside41 dissolved in 0.4% ethanol or 0.4% ethanol alone. Animals were 
cultured for 52 h at 25 °C until they reached the young adult stage or arrested 
at the dauer stage. Animals were exposed to 0.5 μm fluorescent microspheres 
(Polysciences, cat. no. 19507-5) at a final concentration of 7.28 × 108 particles ml−1 
and 5 μl of 1 mg ml−1 HB101 bacterial lysate to promote feeding for 20 min. After 
this exposure, 200 µl of 50 mM sodium azide was added to each well to kill the 
animals, stop feeding and straighten the animals. Using the COPAS BIOSORT 
large particle flow cytometer (Union Biometrica), optical parameters of animals, 
including fluorescence intensity, TOF (animal length) and extinction (optical 
density), were measured. Measured parameters were used to build a model that 
can differentiate dauer and adult stages of the population in each well through the 
R package EMCluster42. One cluster with lower fluorescence and smaller body size 
was assigned to the dauer population and the other to the non-dauer population. 
The dauer fraction was calculated per well as a fraction of dauer animals among 
total animals, which is shown as a single data point in each plot. From the control 
experiments, both the false-positive ratio (false dauer detection in a wild-type 
sample without pheromone treatment) and the false-negative ratio (false non-
dauer detection in Daf-c mutant sample) were 5%, indicating 95% accuracy of the 
assay (Fig. 1b,c).

GWA mapping. A GWA mapping was performed using phenotype data from 
157 wild C. elegans strains. The dauer fractions of 157 wild strains in ascr#5-
treated (800 nM) conditions were measured from four batches of experiments 
with three independent HTDAs each. Contaminated, overcrowded (n > 80) or 
uncrowded (n < 20) samples were filtered out from the dataset. Normalized dauer 
fractions were calculated using a linear model, dauer fraction ~ batch. Genotype 
data were acquired from the latest VCF release (Release 20180527) from CeNDR 
that was imputed as described previously22. We used BCFtools43 to filter variants 
that had any missing genotype calls and variants that were below 5% minor 
allele frequency. We used PLINK version 1.944,45 to LD-prune the genotypes at 
a threshold of r2 < 0.8, using indep-pairwise 50 10 0.8. The pruned genotype set 
comprised 72,568 markers that were used to generate the realized additive kinship 
matrix using the A.mat function in the rrBLUP R package46. These markers were 
also used for genome-wide mapping. However, because these markers still have 
substantial LD within this genotype set, we performed eigen decomposition of 
the correlation matrix of the genotype matrix using the eigs_sym function in the 
Rspectra package47. The correlation matrix was generated using the cor function in 
the correlateR R package48. We set any eigenvalue greater than 1 from this analysis 
to 1 and summed all of the resulting eigenvalues49. This number was 915.621, 
which corresponds to the number of independent tests within the genotype 
matrix. We used the GWAS function in the rrBLUP package to perform genome-
wide mapping with the following command: rrBLUP::GWAS(pheno = dauer, 
geno = Pruned_Markers, K = KINSHIP, min.MAF = 0.05, n.core = 1, P3D = FALSE, 
plot = FALSE). Regions of interest are defined as ±100 single-nucleotide variants 
(SNVs) from the rightmost and leftmost markers above the eigen-decomposition 
significance threshold. If regions of interest for separate QTL are within 1,000 
SNVs, they become grouped as a single region of interest.

Heritability calculations. Estimates of H2 and h2 were calculated using the 
phenotype data of 157 wild strains from the GWA mapping (ascr#5 800 nM). 
The A.mat and E.mat functions in the sommer R package were used to generate 
an additive genotype matrix and an epistatic genotype matrix, respectively, from 
the genotype matrix used for the GWA mapping50. These matrices were used to 
calculate the additive and epistatic variance components using the sommer mmer 
function. Variance components were used to estimate heritability and standard 
error through the pin function (H2 ~ V1 + V2 / V1 + V2 + V3; h2 ~ V1 /  
V1 + V2 + V3) in the sommer package.

Identification of natural deletion variants of srg-36 and srg-37. Whole-genome 
sequence data were aligned to WS245 using bwa (version 0.7.8-r455) with the 
following default parameters: number of threads (t) = 1, minimum seed length 
(k) = 19, bandwidth (w) = 100, Z-dropoff (d) = 100, trigger re-seeding for a MEM 
longer than minSeedLen*FLOAT (r) = 1.5, discard a MEM if it has more than INT 
occurences in the genome (c) = 10,000, matching score (A) = 1, mismatch penalty 
(B) = 4, gap open penalty (O) = 6, gap extension penalty (E) = 1, clipping penalty 
(L) = 5, penalty for an unpaired read pair (U) = 9, output alignment score threshold 
(T) = 30, control the verbose level of the output (v) = 3. Optical/PCR duplicates 
were marked with PICARD (version 1.111)22,51–53. Alignments with greater than 
100× coverage were subsampled to 100× using sambamba54. We called large 
deletions using the Manta structural variant caller (version 1.4.0) using the default 

caller and filter settings (MinQUAL = 20, MinGQ = 15, MinSomaticScore = 30, 
MaxMQ0Frac = 0.4)55.

Generation of srg-36 and srg-37 deletion strains. We generated srg-36 and srg-37 
loss-of-function mutant strains by CRISPR–Cas9-mediated genome editing, using 
a co-CRISPR approach and Cas9 ribonucleoprotein delivery24,25. CRISPR RNAs 
(crRNAs) synthesized by IDT targeting srg-36 (exon 1 and the 3′ untranslated 
region) and srg-37 (exon 2 and exon 5) were used to generate deletions. The 
injection mixture (10 μl) was prepared with 0.88 μl of 200 μM trans-activating 
CRISPR RNA (tracrRNA) (IDT, product no. 1072532), 0.88 μl of 100 μM crRNA1 
(5′ targeting) and crRNA2 (3′ targeting), and 0.12 μl of 100 μM dpy-10 crRNA 
(IDT) and was incubated at 95 °C for 5 min. After cooling to room temperature, 
2.87 μl of 60 μM Cas9 protein (IDT, product no. 1074181) was added and incubated 
at room temperature for 5 min. Finally, 0.5 μl of 10 μM dpy-10 ssODN (IDT) 
repair template and 3.99 μl of nuclease-free water were added. Ribonucleoprotein 
injection mixtures were microinjected into the germline of young adult 
hermaphrodites (P0), and injected animals were singled to fresh 6 cm NGM 
plates 18 h after injection. Two days later, F1 progeny were screened, and animals 
expressing a Rol phenotype were transferred to new plates and allowed to generate 
progeny (F2). Then, F1 animals were genotyped by PCR. Deletion of  
srg-36 was detected with primers oECA1460-1463, and deletion of srg-37 was 
detected with primers oECA1429, oECA1430 and oECA1435. Non-Rol progeny 
(F2) of F1 animals positive for the desired deletion were propagated on separate 
plates to generate homozygous progeny. F2 animals were genotyped afterwards 
with same primer sets, and PCR products were Sanger sequenced for verification. 
All crRNA and oligonucleotide sequences are listed in Supplementary Table 1.

Gene expression analysis of srg-36 and srg-37. Gene expression levels of srg-36 
and srg-37 at the L1 larval stage (WBls:0000024) in the N2 strain were analysed 
from published whole-animal (WBbt:0007833) RNA-seq datasets (ERP003471, 
SRP000253, SRP000401, SRP003492, SRP003783, SRP008969, SRP010374, 
SRP034522, SRP040623, SRP058023)56–65. To equally weight datasets with different 
numbers of replicates, mean values of fragments per kilobase of transcript per 
million mapped reads for each dataset were used for gene expression comparisons.

Population genetics. Sliding window analyses of population genetic statistics 
(Tajima’s D, FST and π) were performed using the PopGenome package in R66. All 
sliding window analyses were performed using the imputed SNV VCF available 
on the CeNDR website with the most diverged strains, XZ1516, set as the 
outgroup22,67,68. The LD of the QTL markers, which can be measured as the square 
of the correlation coefficient (r2), was calculated using the genetics package in R69. 
The formula for the correlation coefficient is r = –D /√(p(A) × p(a) × p(B) × p(b)), 
where D is the coefficient of linkage disequilibrium, p(A) = the observed probability 
of allele ‘A’ for marker 1, p(a) is the observed probability of allele ‘a’ for marker 1, 
p(B) is the observed probability of allele ‘B’ for marker 1 and p(b) is the observed 
probability of allele ‘b’ for marker 1. Haplotype composition of each wild isolate was 
inferred by applying IBDseq70 with variants called by BCFtools71 and the following 
filters: depth (DP) > 10; mapping quality (MQ) > 40; variant quality (QUAL) > 10; 
(alternate-allelic depth (AD) / total depth (DP)) ratio > 0.5; <10% missing genotypes; 
<10% heterozygosity. To generate the genome-wide tree, a whole-population 
relatedness analysis was performed using RAxML-ng with the GTR+FO substitution 
model (https://doi.org/10.5281/zenodo.593079). SNVs were LD-pruned using 
PLINK (v1.9) with the indep-pairwise command ‘indep-pairwise 50 1 0.95’. We used 
the vcf2phylip.py script (https://doi.org/10.5281/zenodo.1257058) to convert the 
pruned VCF files to the PHYLIP format72 required to run RAxML-ng. To construct 
the tree that included 249 strains, we used the GTR evolutionary model available in 
RAxML-ng73,74. Trees were visualized using the ggtree (version 1.10.5) R package75.

Substrate specificity analysis in the cosampling zone. The cosampling zone 
was defined as a location where both srg-37(+) and srg-37(ean179) were isolated 
(Supplementary Fig. 11). Collection information available on the CeNDR website 
was used to analyse correlations between the isolated substrate and the srg-37 
genotype of each isolate. Isolations of wild strains that shared the same genome-
wide genotypes (isotype) were counted as independent isolations if they were 
sampled from different locations or from different substrate types. We found that 
95 isotypes were isolated in the cosampling zone from at least 119 independent 
isolations. Three substrates (animals, compost and rotting fruit) with more than 
ten independent isolated strains were selected for the substrate enrichment test. In 
total, 82 wild strains (66 isotypes) were grouped into three subpopulations by the 
substrate where they were isolated, and allele frequencies of each subpopulation 
were calculated. Significant enrichment of srg-37(ean179) in each subpopulation 
was determined by hypergeometric tests using the stats R package76.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All datasets, including HTDA raw data, for generating figures are available on 
GitHub (https://github.com/AndersenLab/DauerSRG3637).
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Code availability
All code for generating figures is available on GitHub (https://github.com/
AndersenLab/DauerSRG3637).
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