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ABSTRACT Pleiotropy, the concept that a single gene controls multiple distinct traits, is prevalent in most
organisms and has broad implications for medicine and agriculture. The identification of the molecular
mechanisms underlying pleiotropy has the power to reveal previously unknown biological connections
between seemingly unrelated traits. Additionally, the discovery of pleiotropic genes increases our un-
derstanding of both genetic and phenotypic complexity by characterizing novel gene functions. Quantitative
trait locus (QTL) mapping has been used to identify several pleiotropic regions in many organisms. However,
gene knockout studies are needed to eliminate the possibility of tightly linked, non-pleiotropic loci. Here, we
use a panel of 296 recombinant inbred advanced intercross lines of Caenorhabditis elegans and a high-
throughput fitness assay to identify a single large-effect QTL on the center of chromosome V associated with
variation in responses to eight chemotherapeutics. We validate this QTL with near-isogenic lines and pair
genome-wide gene expression data with drug response traits to perform mediation analysis, leading to the
identification of a pleiotropic candidate gene, scb-1, for some of the eight chemotherapeutics. Using
deletion strains created by genome editing, we show that scb-1, which was previously implicated in response
to bleomycin, also underlies responses to other double-strand DNA break-inducing chemotherapeutics. This
finding provides new evidence for the role of scb-1 in the nematode drug response and highlights the power
of mediation analysis to identify causal genes.
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Pleiotropy refers to the well established notion that a single gene or
genetic variant affects multiple distinct traits (Paaby and Rockman
2013), and the discovery of pleiotropic genes can provide meaningful
insights into the molecular mechanisms of these traits (Tyler et al.
2016). It has become easier to identify pleiotropic genes with the

advent of reverse-genetic screens and quantitative trait locus (QTL)
mapping (Paaby and Rockman 2013). For example, pleiotropic QTL
for diverse growth and fitness traits have been identified in organisms
such as yeast (Cubillos et al. 2011; Jerison et al. 2017; Peltier et al.
2019), Arabidopsis (McKay et al. 2003; El‐Assal et al. 2004; Fusari
et al. 2017),Drosophila (Brown et al. 2013;McGuigan et al. 2014), and
mice (White et al. 2013; Leamy et al. 2014; Lin et al. 2014). These
studies have led to important questions in the field of evolutionary
genetics regarding the ‘cost of complexity’ (Fisher; Orr 2000), as a
single mutation might be beneficial for one trait and harmful for
another (Wagner and Zhang 2011). Furthermore, human association
studies have identified pleiotropic variants associated with different
diseases (Sivakumaran et al. 2011; Pavlides et al. 2016; Chesmore et al.
2018), highlighting both the ubiquity and importance of certain
immune-related genes and oncogenes across unrelated diseases
(Borrello et al. 2008; Gratten and Visscher 2016). Perhaps the
strongest evidence of pleiotropy exists for molecular phenotypes.
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Large-scale expression QTL (eQTL) mapping studies have identified
single regulatory variants that control expression and likely the
functions of hundreds of genes at once, opening a window into
the mechanisms for how traits are controlled (Keurentjes et al. 2007;
Breitling et al. 2008; Rockman et al. 2010; Albert and Kruglyak 2015;
Hasin-Brumshtein et al. 2016; Albert et al. 2018).

The nematode Caenorhabditis elegans provides a tractable meta-
zoan model to identify and study pleiotropic QTL (Paaby and
Rockman 2013). A large panel of recombinant inbred advanced
intercross lines (RIAILs) derived from two divergent strains, N2
and CB4856 (Rockman and Kruglyak 2009; Andersen et al. 2015), has
been leveraged in several linkage mapping analyses (Li et al. 2006;
Gutteling et al. 2007b, 2007a; Kammenga et al. 2007; Seidel et al. 2008,
2011; Reddy et al. 2009; McGrath et al. 2009; Doroszuk et al. 2009;
Viñuela et al. 2010; Rockman et al. 2010; Bendesky et al. 2011, 2012;
Bendesky and Bargmann 2011; Rodriguez et al. 2012; Andersen et al.
2014; Glater et al. 2014; Snoek et al. 2014; Balla et al. 2015; Schmid
et al. 2015; Singh et al. 2016; Zdraljevic et al. 2017, 2019; Lee et al.
2017; Zamanian et al. 2018a; Evans et al. 2018; Brady et al. 2019).
Quantitative genetic analysis using these panels and a high-through-
put phenotyping assay (Andersen et al. 2015) has facilitated the
discovery of numerous QTL (Zamanian et al. 2018b), several quan-
titative trait genes (QTG) (Brady et al. 2019) and quantitative trait
nucleotides (QTN) (Zdraljevic et al. 2017, 2019) underlying fitness-
related traits in the nematode. Additionally, three pleiotropic geno-
mic regions were recently found to influence responses to a diverse
group of toxins (Evans et al. 2018). However, overlapping genomic
regions might not represent true pleiotropy but could demonstrate
the co-existence of tightly linked loci (Paaby and Rockman 2013).

Here, we use linkage mapping to identify a single overlapping
QTL on chromosome V that influences the responses to eight
chemotherapeutic compounds. We show that these drug-response
QTL also overlap with an expression QTL hotspot that contains the
gene scb-1, previously implicated in bleomycin response (Brady et al.
2019). Although the exact mechanism of scb-1 is yet unknown, it is
hypothesized to act in response to stress (Riedel et al. 2013) and has
weak homology to a viral hydrolase (Kelley et al. 2015; Zhang et al.
2018). Together, these data suggest that the importance of scb-1
expression might extend beyond bleomycin response. We validated
the QTL using near-isogenic lines (NILs) and performed mediation
analysis to predict that scb-1 expression explains the observed QTL
for four of the eight drugs. Finally, we directly tested the effect of scb-1
loss of function on chemotherapeutic responses. We discovered that
expression of scb-1 underlies differential responses to several che-
motherapeutics that cause double-strand DNA breaks, not just
bleomycin. This discovery of pleiotropy helps to further define the
role of scb-1 by expanding its known functions and provides insights
into the molecular mechanisms underlying the nematode drug
response.

MATERIALS AND METHODS

Strains
Animals were grown at 20� on modified nematode growth media
(NGMA) containing 1% agar and 0.7% agarose to prevent burrowing
and fed OP50 (Ghosh et al. 2012). The two parental strains, the
canonical laboratory strain, N2, and the wild isolate from Hawaii,
CB4856, were used to generate all recombinant lines. 208 recombinant
inbred advanced intercross lines (RIAILs) generated previously by
Rockman et al. (Rockman and Kruglyak 2009) (set 1 RIAILs) were
phenotyped for expression QTL mapping (detailed below). A second

set of 296 RIAILs generated previously by Andersen et al. (Andersen
et al. 2015) (set 2 RIAILs) was used more extensively for drug
phenotyping and linkage mapping. The set 2 RIAILs were used
for linkage mapping because they addressed the three main disad-
vantages of the set 1 RIAILs detailed previously (Andersen et al.
2015), namely a structured population, the laboratory-derived variant
in npr-1 (Sterken et al. 2015), and the peel-1 zeel-1 incompatibility
(Seidel et al. 2008, 2011). Because of these limitations, the set 2 RIAILs
were generated using QX1430 and CB4856. QX1430 is from the N2
strain background but contains a transposon insertion in peel-1 and
the CB4856 npr-1 allele introgressed on chromosome X (Andersen
et al. 2015). Near-isogenic lines (NILs) were generated by back-
crossing a selected RIAIL for several generations to the parent strain
(N2 or CB4856) (Brady et al. 2019) using PCR amplicons for
insertion-deletion (indels) variants to track the introgressed region.
NILs were whole-genome sequenced to verify introgressions were
only in the targeted genomic intervals. CRISPR-Cas9-mediated de-
letions of scb-1 were described previously (Brady et al. 2019). All
strains are available upon request or from the C. elegans Natural
Diversity Resource (Cook et al. 2017). Primers used to generate
ECA1114 can be found in the Supplemental Information.

High-throughput fitness assays for linkage mapping
For dose responses and RIAIL phenotyping, we used a high-through-
put fitness assay described previously (Andersen et al. 2015). In
summary, populations of each strain were passaged and amplified on
NGMA plates for four generations. In the fifth generation, gravid
adults were bleach-synchronized and 25-50 embryos from each strain
were aliquoted into 96-well microtiter plates at a final volume of
50 mL K medium (Boyd et al. 2012). The following day, arrested L1s
were fed HB101 bacterial lysate (Pennsylvania State University
Shared Fermentation Facility, State College, PA; (García-González
et al. 2017)) at a final concentration of 5 mg/mL in K medium and
were grown to the L4 larval stage for 48 hr at 20� with constant
shaking. Three L4 larvae were sorted into new 96-well microtiter
plates containing 10 mg/mL HB101 bacterial lysate, 50 mM kana-
mycin, and either diluent (1% water or 1% DMSO) or drug dissolved
in the diluent using a large-particle flow cytometer (COPAS BIO-
SORT, Union Biometrica; Holliston, MA). Sorted animals were
grown for 96 hr at 20� with constant shaking. The next generation
of animals and the parents were treated with sodium azide (50 mM in
1X M9) to straighten their bodies for more accurate length mea-
surements. Animal length (median.TOF), optical density integrated
over animal length (median.EXT), and brood size (norm.n) were
quantified for each well using the COPAS BIOSORT. Nematodes get
longer (animal length) and become thicker and more complex
(optical density) over developmental time. Because animal length
and optical density are highly correlated, we calculated a fourth trait
(median.norm.EXT) that normalizes optical density by animal length
(median.EXT / median.TOF). Phenotypic measurements collected by
the BIOSORT were processed and analyzed using the R package
easysorter (Shimko and Andersen 2014) as described previously
(Brady et al. 2019). Differences among strains within the control
conditions were controlled by subtracting the mean control-condi-
tion value from each drug-condition replicate for each strain using a
linear model (drug_phenotype � mean_control_phenotype). In this
way, we are addressing only the differences among strains that were
caused by the drug condition and the variance in the control
condition does not affect the variance in the drug condition. For
plotting purposes, these residual values (negative and positive
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residuals) were normalized from 0 to 1 where 0 refers to the smallest
residual phenotypic value in that condition and 1 refers to the largest.

Dose-response assays
Four genetically divergent strains (N2, CB4856, JU258, and DL238)
were treated with increasing concentrations of each of the eight drugs
using the high-throughput fitness assay described above. The dose of
each drug that provided a reproducible drug-specific effect that
maximizes between-strain variation while minimizing within-strain
variation across the four traits was selected for the linkage mapping
experiments. The chosen concentrations are as follows: 100 mM
amsacrine hydrochloride (Fisher Scientific, #A277720MG) in DMSO,
50 mM bleomycin sulfate (Fisher, #50-148-546) in water, 2 mM
bortezomib (VWR, #AAJ60378-MA) in DMSO, 250 mM carmustine
(Sigma, #1096724-75MG) in DMSO, 500 mM cisplatin (Sigma,
#479306-1G) in K media, 500 mM etoposide (Sigma, #E1383) in
DMSO, 500 mM puromycin dihydrochloride (VWR, #62111-170) in
water, and 150 mM silver nitrate (Sigma-Aldrich, #S6506-5G) in water.

Linkage mapping
Set 1 and set 2 RIAILs were phenotyped in each of the eight drugs and
controls using the high-throughput fitness assay described above.
Linkage mapping was performed on each of the drug and gene
expression traits using the R package linkagemapping (https://
github.com/AndersenLab/linkagemapping) as described previously
(Brady et al. 2019). The cross object derived from the whole-genome
sequencing of the RIAILs containing 13,003 SNPs was loaded using
the function load_cross_obj(“N2xCB4856cross_full”). The RIAIL phe-
notypes were merged into the cross object using the merge_pheno
function with the argument set = 1 for expression QTL mapping and
set = 2 for drug phenotype mapping. A forward search (fsearch
function) adapted from the R/qtl package (Broman et al. 2003) was
used to calculate the logarithm of the odds (LOD) scores for each
genetic marker and each trait as -n(ln(1-R2)/2ln(10)) where R is the
Pearson correlation coefficient between the RIAIL genotypes at the
marker and trait phenotypes (Bloom et al. 2013). A 5% genome-wide
error rate was calculated by permuting the RIAIL phenotypes
1000 times. The marker with the highest LOD score above the
significance threshold was selected as the QTL then integrated into
the model as a cofactor and mapping was repeated iteratively until no
further significant QTL were identified. Finally, the annotate_lods
function was used to calculate the effect size of each QTL and
determine 95% confidence intervals defined by a 1.5 LOD drop from
the peak marker using the argument cutoff = proximal.

Modified high-throughput fitness assay for
NIL validation
NILs and scb-1 deletion strains were tested using a modified version
of the high-throughput fitness assay detailed above. Strains were
propagated for two generations, bleach-synchronized in three in-
dependent replicates, and titered at a concentration of 25-50 embryos
per well of a 96-well microtiter plate. The following day, arrested L1s
were fed HB101 bacterial lysate at a final concentration of 5 mg/mL
with either diluent or drug. After 48 hr of growth at 20� with constant
shaking, nematodes were treated with sodium azide (5 mM in water)
prior to analysis of animal length and optical density using the
COPAS BIOSORT. As only one generation of growth is observed,
brood size was not calculated. A single trait (median.EXT) was chosen
to represent animal growth generally, as the trait is defined by
integrating optical density over length. Because of the modified

timing of the drug delivery, lower drug concentrations were needed
to recapitulate the previously observed phenotypic effect. The selected
doses are as follows: 12.5 mM amsacrine in DMSO, 12.5 mM bleo-
mycin in water, 2 mM bortezomib in DMSO, 250 mM carmustine in
DMSO, 125 mM cisplatin in K media, 62.5 mM etoposide in DMSO,
300 mM puromycin in water, and 100 mM silver in water.

Expression QTL analysis
Microarray data for gene expression using 15,888 probes were pre-
viously collected from synchronized young adult populations of
208 set 1 RIAILs (Rockman et al. 2010). Expression data were
corrected for dye effects and probes with variants were removed
(Andersen et al. 2014). Linkage mapping was performed as described
above for the remaining 14,107 probes, and a significance threshold
was determined using a permutation-based False Discovery Rate
(FDR). FDR was calculated as the ratio of the average number of
genes across 10 permutations expected by chance to show a maxi-
mum LOD score greater than a particular threshold vs. the number of
genes observed in the real data with a maximum LOD score greater
than that threshold. We calculated the FDR for a range of thresholds
from 2 to 10, with increasing steps of 0.01, and set the threshold so
that the calculated FDR was less than 5%.

Local eQTL were defined as linkages whose peak LOD scores were
within 1 Mb of the starting position of the probe (Rockman et al.
2010). eQTL hotspots were identified by dividing the genome into
5 cM bins and counting the number of distant eQTL that mapped to
each bin. Significance was determined as bins with more eQTL than
the Bonferroni-corrected 99th percentile of a Poisson distribution
with a mean of 3.91 QTL (total QTL / total bins) (Brem et al. 2002;
Rockman et al. 2010; Evans et al. 2018). We identified nine eQTL
hotspots (II, IVL, IVC, IVR, VL, VC, VR, XL, and XC). To avoid false
positives, we increased the LOD threshold for QTL to be counted in
the hotspot analysis to a LOD. 5 or LOD. 6. At a LOD. 5, six of
the nine eQTL hotspots persist (IVL, IVR, VC, VR, XL, and XC), and
at a LOD. 6, three persist (IVL, IVR, and XL). We further looked for
spurious eQTL hotspots in ten permuted datasets. At a LOD. 5, we
identified four hotspots, and at a LOD. 6, we identified one hotspot.

Mediation analysis
A total of 159 set 1 RIAILs were phenotyped in each of the eight drugs
and controls using the standard high-throughput fitness assay de-
scribed above. Mediation scores were calculated with bootstrapping
using the mediate function from the mediation R package (version
4.4.7) (Tingley et al. 2014) for each QTL identified from the set
1 RIAILs and all 49 probes (including scb-1, A_12_P104350) that
mapped to the chromosome V eQTL hotspot using the following
models:

Mediator model : lmðexpression � genotypeÞ (1)

Outcome model : lmðphenotype � expressionþ genotypeÞ (2)

The output of themediate function can be summarized as follows: the
total effect of genotype on phenotype, ignoring expression (tau.coef);
the direct effect of genotype on phenotype, while holding expression
constant (z0); the estimated effect of expression on phenotype (d0);
the proportion of the total effect that can be explained by expression
data (n0). This mediation proportion (n0) can be a useful way to
identify the impact of gene expression on the overall phenotype.
However, cases of inconsistent mediation (where the direct effect is
either smaller than or in the opposite direction of the indirect
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mediation effect) render this measurement uninterpretable with
values greater than one or less than zero (MacKinnon et al. 2007).
We used the estimated effect of expression on phenotype (z0) as the
final mediation score for this reason. Because the effect size can be
positive or negative, mediation scores range from -1 to 1, and we
evaluated the absolute value of mediation estimates to compare across
traits. Each mediation estimate generated a p-value, indicating con-
fidence in the estimate, derived from bootstrapping with 1000 sim-
ulations. The likelihood of scb-1 mediating a given QTL effect was
calculated relative to the other 48 probes with an eQTL in the region
(Table S1). Traits in which scb-1 was at or above the 90th percentile of
this distribution were prioritized over other traits.

Statistical analysis
Broad-sense heritability was calculated from the dose response
phenotypes using the lmer function in the lme4 R package (Bates
et al. 2014) with the formula phenotype �1 + (1|strain) for each dose.
For the NIL and scb-1 deletion high-throughput assays, statistical
significance of phenotypic differences between each strain pair was
tested using the TukeyHSD function (R Core Team 2017) on an
ANOVA model with the formula phenotype � strain to assess
differences between strains in the control-regressed phenotype data.

Data availability
File S1 contains the results of the original dose response high-
throughput fitness assay. File S2 contains the residual phenotypic
values for all 159 set 1 RIAILs, 296 set 2 RIAILs, and parent strains
(N2 and CB4856) in response to all eight chemotherapeutics. File S3
contains the linkage mapping results for the set 2 RIAILs for all
32 drug-response traits tested in the high-throughput fitness assay.
File S4 is a VCF that reports the genotype of ECA1114. File S5
contains the simplified genotype of all the NILs in the study. File S6
contains the raw pruned phenotypes for the NIL dose response with
the modified high-throughput fitness assay. File S7 contains the
pairwise statistical significance for all strains and high-throughput
assays. File S8 contains the microarray expression data for 14,107
probes from Rockman et al. 2010. File S9 contains the linkage
mapping results for the expression data obtained with the set
1 RIAILs. File S10 contains the location of each eQTL hotspot
and a list of genes with an eQTL in each hotspot. File S11 contains
the linkage mapping results from the set 1 RIAILs for all 32 drug-
response traits tested in the high-throughput fitness assay. File S12
contains the pairwise mediation estimates for all 32 drug-response
traits and all 49 probes. File S13 contains the raw pruned phenotypes
for the scb-1 deletion modified high-throughput fitness assay. The

datasets and code for generating figures can be found at https://
github.com/AndersenLab/scb1_mediation_manuscript. Supplemental
material available at figshare: https://doi.org/10.25387/g3.12250091.

RESULTS

Natural variation on chromosome V underlies
differences in responses to several chemotherapeutics
We measured C. elegans development and chemotherapeutic
sensitivity as a function of animal length (median.TOF), optical
density (median.EXT), and brood size (norm.n) with a high-
throughput assay developed using the COPAS BIOSORT (see
Methods) (Andersen et al. 2015; Zdraljevic et al. 2017, 2019;
Evans et al. 2018; Brady et al. 2019). Animal length and optical
density (animal thickness and composition) are both measures of
nematode development, and brood size is a measure of nematode
reproduction (Andersen et al. 2015). Because optical density is
calculated as a function of length and these traits are related, a
fourth trait that captures the optical density normalized by length
(median.norm.EXT) was also included. We exposed four genet-
ically divergent strains (N2, CB4856, JU258, and DL238) to
increasing doses of eight chemotherapeutic compounds. Five of
these compounds (bleomycin, carmustine, etoposide, amsacrine,
and cisplatin) are known to cause double-strand DNA breaks
and/or inhibit DNA synthesis (Dorr 1992; Ketron et al. 2012;
Dasari and Tchounwou 2014; Montecucco et al. 2015; Nikolova
et al. 2017). The remaining three compounds either inhibit pro-
tein synthesis (puromycin) (Azzam and Algranati 1973), inhibit
the proteosome and subsequent protein degradation (bortezo-
mib) (Piperdi et al. 2011), or cause cellular toxicity in a poorly
defined way (silver nitrate) (Kaplan et al. 2016) (Table 1). In the
presence of each drug, nematodes were generally shorter, less opti-
cally dense, and produced smaller broods compared to non-treated
nematodes (Figure S1, File S1). We observed significant phenotypic
variation among strains and identified a substantial heritable genetic
component for most traits (average H2 = 0.52 +/2 0.53).

We exposed a panel of 296 RIAILs (set 2 RIAILs, see Methods) to
all eight chemotherapeutics at a selected concentration that both
maximizes among-strain and minimizes within-strain phenotypic
variation (File S2). Linkage mapping for all four traits for each of the
eight drugs (total of 32 traits) identified 79 QTL from 31 traits (one
trait had no significant QTL), several of which have been identified
previously (Zdraljevic et al. 2017; Evans et al. 2018; Brady et al. 2019)
(File S3, Figure S2). Strikingly, a QTL on the center of chromosome V
was linked to variation in responses to all eight compounds (Figure 1).
In all cases, the CB4856 allele on chromosome V is associated with

n■ Table 1 Main mechanism of action for eight chemotherapeutic drugs

Drug Drug class Mechanism of action

Amsacrine Topoisomerase
inhibitors

DNA intercalation and inhibition of topoisomerase II, causing DNA double-strand breaks, cell cycle arrest,
and cell death

Bleomycin Antitumor antibiotic Forms complexes with iron that reduce molecular oxygen to form free radicals which in turn cause DNA
single- and double-strand breaks

Bortezomib Proteosome
inhibitors

Reversibly inhibits the 26S proteosome and inhibits nuclear factor (NF)-kappaB causing disruption of various
cell signaling pathways, cell cycle arrest, and cell death.

Carmustine Alkylating agents Alkylates and cross-links DNA causing cell cycle arrest and cell death
Cisplatin Alkylating agents Alkylates and cross-links DNA causing cell cycle arrest and cell death
Etoposide Topoisomerase

inhibitors
Binds to and inhibits topoisomerase II causing an increase of DNA single- and double-strand breaks, cell

cycle arrest, and cell death
Puromycin Aminonucleoside

antibiotic
Acts as analog of 39 terminal end of aminoacyl-tRNA and incorporates itself into growing polypeptide chain

causing premature termination and inhibition of protein synthesis
Silver NA Multi-faceted induction of apoptosis

2356 | K. S. Evans and E. C. Andersen

https://identifiers.org/bioentitylink/WB:WBGene00010407
https://identifiers.org/bioentitylink/WB:WBGene00010407
https://identifiers.org/bioentitylink/WB:WBGene00010407
https://identifiers.org/bioentitylink/WB:WBGene00010407
https://github.com/AndersenLab/scb1_mediation_manuscript
https://github.com/AndersenLab/scb1_mediation_manuscript
https://doi.org/10.25387/g3.12250091


Figure 1 A large-effect QTL on the center of chromosome V underlies responses to several chemotherapeutics. Linkage mapping results with the
set 2 RIAILs for a representative trait for each drug are shown (amascrine: median.norm.EXT, bleomycin median.TOF:, bortezomib: median.TOF,
carmustine: norm.n, cisplatin: median.TOF, etoposide: norm.n, puromycin: median.TOF, silver: median.TOF). Genomic position (x-axis) is plotted
against the logarithm of the odds (LOD) score (y-axis) for 13,003 genomic markers. Each significant QTL is indicated by a red triangle at the peak
marker, and a blue rectangle shows the 95% confidence interval around the peak marker. The percentage of the total variance in the RIAIL
population that can be explained by each QTL is shown above the QTL. The dotted vertical line represents the genomic position of scb-1.
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greater resistance to the drug than the N2 allele (Figure S2, File S2,
File S3). We previously identified this genomic interval as a QTL
hotspot, defined as a region heavily enriched for toxin-response QTL
(Evans et al. 2018). Because several of the chemotherapeutics share a
similar mechanism of action, a single pleiotropic gene might underlie
the observed QTL for multiple drugs.

In order to isolate and validate the effect of this QTL, we
constructed reciprocal near-isogenic lines (NILs) by introgressing
a genomic region on chromosome V from the resistant CB4856 strain
into the sensitive N2 background and vice versa (File S4, File S5). We
used a modified high-throughput assay (see Methods) to measure
length and optical density of a population of animals grown in the
presence of the drug for 48 hr (from larval stages L1 to L4). In this
modified assay, less drug was required to observe the same pheno-
typic effect as before (Figure S3, File S6). Statistical significance was
calculated in a pairwise manner for each strain (see Methods; File S7).
For all eight chemotherapeutics tested, the strain with the N2 in-
trogression was significantly more sensitive than its CB4856 parent
and/or the strain with the CB4856 introgression was significantly
more resistant than its N2 parent (Figure 2, File S6, File S7). These
data confirm that one or more genetic variant(s) within this region on
chromosome V cause increased drug sensitivities in N2.

Expression QTL mapping identifies a hotspot on the
center of chromosome V
Genetic variation can affect a phenotype most commonly through
either modifications of the amino acid sequence that lead to altered
protein function (or even loss of function) or changes in the expres-
sion level of the protein. In the latter case, measuring the intermediate
phenotype (gene expression) can be useful in elucidating the mech-
anism by which genetic variation causes phenotypic variation. More
specifically, cases with overlap between expression QTL (eQTL) and
drug-response QTL suggest that a common variant could underlie
both traits and provide evidence in support of causality for the
candidate gene in question (Huang et al. 2015; Sasaki et al. 2018).

To identify such cases of overlap between expression QTL and the
drug-response QTL on chromosome V, we need genome-wide
expression data for the RIAILs. In a previous study, expression of
15,888 probes were measured using microarrays for a panel of
208 RIAILs (set 1 RIAILs, see Methods) between N2 and CB4856
(Rockman and Kruglyak 2009) (File S8). This study used the variation

in gene expression as a phenotypic trait to identify eQTL using
linkage mapping with 1,455 variants (Rockman et al. 2010). They
identified 2,309 eQTL and three regions with significantly clustered
distant eQTL (eQTL hotspots), suggesting that these regions are
pleiotropic, wherein one or more variant(s) are affecting expression of
multiple genes. We recently performed whole-genome sequencing for
these strains and identified 13,003 informative variants (Brady et al.
2019). Using this new set of variants, we re-analyzed the eQTL
mapping by performing linkage mapping analysis for a selected
14,107 of the 15,888 probes without genetic variation in CB4856
(Andersen et al. 2014). We identified 2,540 eQTL associated with
variation in expression of 2,196 genes (Figure 3A, File S9). These
eQTL have relatively large effect sizes compared to the drug-response
QTL. On average, each eQTL explains 23% of the phenotypic
variance in gene expression among the RIAIL population. Half of
the eQTL (50.2%; 1,276) mapped within 1 Mb of the gene whose
expression was measured and were classified as local (see Methods)
(Albert and Kruglyak 2015). The other half (49.7%; 1,264) were found
distant from their respective gene, and over a third (37%; 940) were
found on different chromosomes entirely. In general, eQTL effect sizes
increased, max LOD scores decreased, and confidence intervals became
smaller compared to the original mapping results (File S9). These
differences and the additional eQTL observed between this analysis and
the original are possibly caused by the integration of new genetic
markers. Additionally, we found several differences in methodology
between the current approach and the previous one. These differences
include ignoring the population structure of the set 1 RIAILs, adding the
forward-search marker-regression linkage mapping, and altering the
linkage mapping method itself (see Methods, (Rockman et al. 2010)).

We noticed regions of the genome that appeared to be enriched
for distant eQTL.We identified eQTL hotspots in a similar manner to
the previous study (see Methods) and found a total of nine eQTL
hotspots (Figure 3B, File S10). Six of the nine eQTL hotspots
withstood more stringent filtering methods (see Methods), and three
(left of chromosome IV, right of chromosome IV, and left of
chromosome X) were the most significant. These three hotspots also
overlap with the most significant eQTL hotspots in the previous study
(Rockman et al. 2010). Notably, three of the eQTL hotspots (center of
chromosome IV, right of chromosome IV, and center of chromosome
V) overlap with the previously identified drug-response QTL hot-
spots on chromosomes IV and V (Figure 3B) (Evans et al. 2018). The

Figure 2 Near-isogenic lines validate the chromosome V QTL. (A) NIL genotypes on chromosome V are shown, colored orange (N2) and blue
(CB4856). From top to bottom, strains are N2, ECA232, ECA1114, and CB4856. The dotted vertical line represents the location of scb-1. (B) NIL
phenotypes in eight chemotherapeutics (12.5mMamsacrine, 12.5mMbleomycin, 2mMbortezomib, 250mMcarmustine, 125mMcisplatin, 62.5mM
etoposide, 300 mMpuromycin, and 100 mM silver) are plotted as Tukey box plots with strain (y-axis) by relative median optical density (median.EXT,
x-axis). Statistical significance was calculated for each strain pair (File S7). Significance of each strain compared to its parental strain (ECA232 to N2
and ECA1114 to CB4856) is shown above each strain pair and colored by the parent strain against which it was tested (ns = non-significant (p-
value . 0.05); �, ��, ���, and ���� = significant (p-value , 0.05, 0.01, 0.001, or 0.0001, respectively).
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overlap of these eQTL and drug-response QTL hotspots could pro-
vide strong candidate genes whose expression underlies the differ-
ences in nematode drug responses generally. Expression of one gene
of interest, scb-1, has been previously implicated in response to
bleomycin (Brady et al. 2019) and resides within the eQTL hotspot
region on the center of chromosome V (File S10, Table S1). Although
the exact mechanism of how scb-1 responds to bleomycin is

unknown, its putative hydrolase activity (Kelley et al. 2015; Zhang
et al. 2018; Brady et al. 2019) suggests that it might act to break down
chemotherapeutic compounds. These data suggest that variation in
expression of scb-1 and responses to these eight chemotherapeutics
(including bleomycin) could be mechanistically linked through the
metabolic breakdown of chemotherapeutic drugs.

Figure 3 Expression QTL mapping identifies several hotspots. (A) The genomic locations of the eQTL peaks derived from linkage mapping using
the set 1 RIAILs (x-axis) are plotted against the genomic locations of the probe (y-axis). The size of the point corresponds to the effect size of theQTL.
eQTL are colored by the LOD score, increasing from purple to pink to yellow. The diagonal band represents local eQTL, and vertical bands
represent eQTL hotspots. (B) Quantification of eQTL hotspots identified by overlapping distant eQTL. The number of distant eQTL (y-axis) in each
5 cM bin across the genome (x-axis) is shown. Bins above the red line are significant andmarked with an asterisk. The bins with the blue asterisks are
most significant and have been identified in a previous analysis. The dotted vertical line represents the genomic position of scb-1. Gray rectangles
below the plot represent locations of the drug-response QTL hotspots previously identified.
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Mediation analysis suggests that scb-1 expression plays
a role in responses to several chemotherapeutics
Mediation analysis seeks to explain the relationship between an in-
dependent and a dependent variable by including a third intermediary
variable. We can use mediation analysis to understand how certain
genetic variants on chromosome V (independent variable) affect drug
responses (dependent variable) through differential gene expression of
genes within the eQTL hotspot (mediator variable) (Figure S4). We
measured brood size, animal length, and optical density in response to
all eight chemotherapeutics in the set 1 RIAILs and performed linkage
mapping for these traits (File S2, File S11, Figure S5). Although the
power to detect QTL with these strains is lower than in our original
mapping set (set 2 RIAILs; see Methods) (Andersen et al. 2015), we still
identified overlapping QTL on chromosome V for half of the drugs
tested (bleomycin, cisplatin, silver, and amsacrine) (Figure S5, File S11).

We calculated the effect that variation in expression of scb-1 had on
drug-response traits compared to the other 48 genes with an eQTL in
the chromosome V eQTL hotspot using mediation analysis (see
Methods). We estimated that the effect of expression variation of
scb-1 on bleomycin response is 0.65 (set 1 RIAILs, Figure 4, Figure S6,
File S12). Moreover, out of all 49 genes with an eQTL in the region
(Table S1), scb-1 was a clear mediation score outlier. All of the
remaining three chemotherapeutics with a QTL on the center of
chromosome V in the set 1 RIAILmapping showed moderate evidence
of scb-1 mediation, with scb-1 falling well above the 90th percentile of
mediation estimates for all genes with an eQTL in this region (Figure 4,
Figure S6, File S12). We further performed this mediation analysis on
all 32 drug-response traits, regardless of the presence of a QTL in the set
1 RIAIL panel (Figure S6, File S12). Etoposide and puromycin also
showed evidence of scb-1 mediation. This in silico approach indicated
that expression of scb-1might be an intermediate link between genetic
variation on chromosome V and responses to several of the chemo-
therapeutic drugs tested.

Expression of scb-1 affects responses to several
chemotherapeutics that cause double-strand
DNA breaks
To empirically test whether scb-1 expressionmodulates the chromosome
VQTL effect for each drug, we used the modified high-throughput assay

(see Methods) to expose two independently derived strains with scb-1
deletions (Brady et al. 2019) to each chemotherapeutic (Figure 5, Figure
S7, File S13). Statistical significance was calculated in a pairwise manner
for each strain (see Methods; File S7). Because RIAILs with the CB4856
allele on chromosome V express higher levels of scb-1 than RIAILs with
the N2 allele (File S8, File S9), we expect that loss of scb-1 will cause
increased drug sensitivity in the CB4856 background but might not have
an effect in the N2 background. We validated the results of Brady et al.
and confirmed that ablated scb-1 expression causes hyper-sensitivity to
bleomycin in bothN2 and CB4856 (Figure 5, Figure S7, Figure S8 File S7,
File S13). We also observed similarly increased sensitivity to cisplatin
with scb-1 deletions in both backgrounds. Furthermore, removing scb-1
shows moderately increased sensitivity in the CB4856 background for
amsacrine and in theN2 background for carmustine. The remaining four
drugs did not show a significantly different phenotype between the
parental N2 and CB4856 strains, suggesting these traits might be less
reproducible or that scb-1 variation does not underlie these drug dif-
ferences. Overall, these results provide evidence for the pleiotropic effect
of scb-1, which appears to mediate responses to at least four of the eight
chemotherapeutic drugs.

DISCUSSION
In this study, we identified overlapping QTL on the center of
chromosome V that influence sensitivities to eight chemotherapeutic
drugs. Because five of these drugs are known to cause double-strand
DNA breaks, we hypothesized that this genomic region might be
pleiotropic – a single shared genetic variant affects the responses to
each drug. Because this variant might affect drug responses by
regulating gene expression levels, we looked for the co-existence of
drug-response QTL and expression QTL on chromosome V. We
identified 2,540 eQTL and nine eQTL hotspots, including a region on
the center of chromosome V.We calculated the mediation effect of all
49 genes with an eQTL that maps to this hotspot region and identified
scb-1 as a candidate gene whose expression influences the responses
to several chemotherapeutics. We used CRISPR-Cas9-mediated scb-1
deletion strains to empirically validate the role of scb-1 in the
chemotherapeutic response. In addition to bleomycin (Brady et al.
2019), we discovered that responses to cisplatin, amsacrine, and
carmustine are affected by scb-1 expression. In this study, we found

Figure 4 Mediation analysis for the eQTL hotspot on the center of chromosome V. Mediation estimates calculated as the indirect effect that
differences in expression of each gene plays in the overall phenotype (y-axis) are plotted against the genomic position of the eQTL (x-axis) on
chromosome V for 49 probes (including scb-1 (red diamond)) that map to the chromosome V eQTL hotspot (set 1 RIAILs). A representative trait for
each drug from the set 1 linkage mapping analysis are shown: amascrine (median.EXT), bleomycin (median.EXT), cisplatin (median.TOF), and silver
(median.norm.EXT). The 90th percentile of the distribution of mediation estimates for each trait are represented by the horizontal gray lines. The
confidence intervals for the QTL (set 1 RIAILs) are shown with the vertical blue dotted lines. The confidence of the estimate increases (p-value
decreases) as points become less transparent.
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evidence that several overlapping QTL are representative of pleiot-
ropy at the gene level and further elucidated the function of scb-1 as a
potential response to double-strand DNA break stress.

Mediation of drug-response QTL using gene expression
to identify causal genes
Mediation analysis often suggests potential candidate genes that
underlie different traits (Huang et al. 2015; Sasaki et al. 2018) and
could be applied to drug responses. Using C. elegans strains and high-
throughput assays, we can rapidly validate hypotheses generated by
mediation analysis. Three of the eight chemotherapeutics that map to
an overlapping drug-response QTL and were potentially mediated by
scb-1 were validated using targeted deletion strains.

Although mediation analysis provided moderate evidence that
expression of scb-1 could also play a role in sensitivity to etoposide
and puromycin, we observed no experimental evidence of this re-
lationship. Additionally, we have evidence that expression of scb-1
might mediate response to carmustine. However, mediation analysis
disagrees. The discrepancy between the mediation analysis and
validation of causality using targeted deletion strains could be
partially explained by one of several possibilities. First, different traits
were measured in each experiment. The mediation analysis used traits
measured over 96 hr of growth in drug conditions spanning two
generations, but the causality test used traits measured over 48 hr of
growth in drug conditions within one generation. Second, the pre-
cision of our mediation estimates was likely reduced by the poor
quality drug traits for the set 1 RIAIL panel (Andersen et al. 2015).
Indeed, bortezomib, carmustine, etoposide, and puromycin did not
map to the center of chromosome V using the set 1 RIAILs (Figure
S5). Expression data for the set 2 RIAIL panel would likely generate
more accurate mediation estimates, especially if data were collected
using RNA sequencing to avoid the inherent reference bias of micro-
array data (Zhao et al. 2014). Third, our mediation analysis was
performed using expression data collected in control conditions and
phenotype data collected in drug conditions. This analysis will only
provide evidence of mediation if the baseline expression differences
affect an individual’s response to the drug. Collecting expression data
from drug-treated nematodes could help us learn more about how
gene expression varies in response to treatment with the chemother-
apeutic. Finally, as we only directly assessed the complete loss of scb-1
in drug sensitivity, it is still possible that reduction of function (or

change in function) caused by a single nucleotide variant or other
structural variation in CB4856 could validate the role of scb-1 in
responses to these drugs.

This study demonstrates the power of pairing genome-wide
linkage mapping of gene expression and drug response data using
simple colocalization as well as more complex mediation analysis
techniques. In addition to providing a resource for candidate gene
prioritization within a QTL interval, mediation analysis can help to
identify the mechanism by which genetic variation causes phenotypic
differences. This type of approach could be even more powerful using
genome-wide association (GWA) where the lower linkage disequi-
librium between variants also has smaller confidence intervals in
some genomic regions. Smaller intervals have fewer spurious over-
lapping eQTL, which could help to narrow the list of candidate genes.
Althoughmediation analysis is only effective if a change in expression
is observed and might not be useful for identifying effects from
protein-coding variation, many current studies show that the ma-
jority of genetic variants associated with complex traits lie in regu-
latory regions (Hindorff et al. 2009). Whole-genome expression
analysis could provide the missing link to the identification of causal
genes underlying complex traits.

New evidence for the pleiotropic function of scb-1
We identified eight chemotherapeutics with a QTL that mapped to a
genomic region defined as a QTL hotspot on the center of chromo-
some V (Evans et al. 2018). Multiple genes in close proximity, each
regulating an aspect of cellular growth and fitness, might underlie
each QTL independently. Alternatively, genetic variation within a
single gene might regulate responses to multiple (or all) of the eight
drugs tested, particularly if the gene is involved in drug transport or
metabolism or if the drug mechanisms of action were shared (e.g.,
repair of double-strand DNA breaks). Expression of scb-1, a gene
previously implicated in modulating responses to bleomycin, was
found to reduce sensitivity to half of the drugs tested. This pleiotropic
effect of scb-1 provides new evidence for the function of the gene and
possible molecular mechanisms underlying nematode drug re-
sponses. It is hypothesized that SCB-1 might function as a hydrolase
that metabolizes compounds like bleomycin (Brady et al. 2019) or
somehow plays a role in the nematode stress response (Riedel et al.
2013). Both hypotheses are consistent with our data, explaining why

Figure 5 Testing the role of scb-1 in drug responses. (A) Strain genotypes on chromosome V are shown, colored orange (N2) and blue (CB4856).
From top to bottom, strains are N2, ECA1132, ECA1134, and CB4856. Deletion of scb-1 is indicated by a gray triangle. The dotted vertical line
represents the location of scb-1. (B) Phenotypes of strains in eight chemotherapeutics (12.5 mM amsacrine, 12.5 mM bleomycin, 2 mM bortezomib,
250 mM carmustine, 125 mM cisplatin, 62.5 mM etoposide, 300 mMpuromycin, and 100 mM silver) are plotted as Tukey box plots with strain (y-axis)
by relative median optical density (median.EXT, x-axis). Statistical significance was calculated for each strain pair (File S7). Significance of each
deletion strain compared to its parental strain (ECA1132 to N2 and ECA1134 to CB4856) is shown above each strain pair and colored by the parent
strain against which it was tested (ns = non-significant (p-value . 0.05); �, ��, ���, and ���� = significant (p-value , 0.05, 0.01, 0.001, or 0.0001,
respectively).
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nematodes with low expression of scb-1 are highly sensitive to the
compound. Furthermore, all four of these chemotherapeutics, whose
responses are mediated by expression of scb-1, are known to cause
double-strand DNA breaks (Dorr 1992; Ketron et al. 2012; Dasari and
Tchounwou 2014; Nikolova et al. 2017). Although the results for
bortezomib, puromycin, and silver were inconclusive, we found no
clear evidence that expression of scb-1 dictates their responses.
Together, these data suggest a potential role for scb-1 specifically
in response to stress induced by double-strand DNA breaks. How-
ever, the lack of sensitivity in etoposide, which also causes double-
strand DNA breaks (Montecucco et al. 2015), indicates that this
response might be more complex.

The exact variant that causes the differential expression of scb-1 is
still unknown. Importantly, scb-1 lies within an eQTL hotspot region
where it is hypothesized that genetic variation at a single locus might
regulate expression of the 49 genes with an eQTL in this region. It is
possible that the same causal variant that regulates expression of scb-1
could also underlie the QTL for the remaining four chemotherapeu-
tics through differential expression of other genes. For example,
mediation analysis for both bortezomib and etoposide indicated that
expression variation of a dehydrogenase (D1054.8) may underlie their
differential responses (File S12). Alternatively, the causal variants
underlying these drug-response QTL might be distinct but physically
linked in the genome. This result would suggest a cluster of genes
essential for the nematode drug response. Overall, our study high-
lights the power of using mediation analysis to connect gene expres-
sion to organismal traits and describes a novel function for the
pleiotropic gene scb-1.
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