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ABSTRACT 

The distribution of fitness effects for new mutations is one of the most theoretically important but 

difficult to estimate properties in population genetics. A crucial challenge to inferring the 

distribution of fitness effects (DFE) from natural genetic variation is the sensitivity of the site 

frequency spectrum to factors like population size change, population substructure, and non-

random mating. Although inference methods aim to control for population size changes, the 

influence of non-random mating remains incompletely understood, despite being a common 

feature of many species. We report the distribution of fitness effects estimated from 326 genomes 

of Caenorhabditis elegans, a nematode roundworm with a high rate of self-fertilization. We 

evaluate the robustness of DFE inferences using simulated data that mimics the genomic structure 

and reproductive life history of C. elegans. Our observations demonstrate how the combined 

influence of self-fertilization, genome structure, and natural selection can conspire to compromise 

estimates of the DFE from extant polymorphisms. These factors together tend to bias inferences 

towards weakly deleterious mutations, making it challenging to have full confidence in the inferred 

DFE of new mutations as deduced from standing genetic variation in species like C. elegans. 

Improved methods for inferring the distribution of fitness effects are needed to appropriately 

handle strong linked selection and selfing. These results highlight the importance of understanding 

the combined effects of processes that can bias our interpretations of evolution in natural 

populations. 
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INTRODUCTION 

Understanding the distribution of fitness effects (DFE) of new mutations is necessary to 

characterize the role of mutation in the evolutionary process and to determine the full impact that 

mutations have on the fitness of individuals and populations. The DFE influences the rate and 

trajectory of adaptive evolution (Orr 2000; Good et al., 2012), the maintenance of genetic variation 

(Charlesworth et al. 1995), the evolution of sex and recombination (Peck et al. 1997), the fate of 

small populations (Schultz and Lynch 1997), the molecular clock (Ohta 1992), the rate of decay 

of fitness due to Muller's Ratchet (Loewe 2006), and the evolution of the mutation rate itself 

(Kondrashov 1995; Lynch 2008). Understanding the DFE is also necessary for accurate 

characterization of the genetic basis of complex traits, including human disease (Eyre-Walker 

2010), and has been sought for decades (Boyko et al. 2008; Eyre-Walker and Keightley 2007; 

Kousathanas and Keightley 2013; Charlesworth 2015; Kim et al. 2017; Tataru et al. 2017). Any 

dynamic model of evolution must either define the DFE explicitly and assume its distribution or 

ignore the varying effects of mutations. Despite these fundamental roles, the DFE is a challenging 

property to estimate (Eyre-Walker and Keightley 2007; Charlesworth 2015).  

The DFE defines the probability that a new mutation will alter organismal survival or 

reproduction by a given magnitude. Following common practice, we restrict our consideration of 

the DFE to new deleterious mutations that reduce fitness relative to the ancestral state. This DFE 

can be quantified in two basic ways: (1) from direct experimental measurement of fitness effects 

of new mutations or mutation panels (Thatcher et al. 1998; Sanjuán et al. 2004; DePristo et al. 

2007) or (2) from indirect inference using the site frequency spectrum (SFS) of genetic variants in 

populations (Loewe et al. 2006; Keightley and Eyre-Walker 2007; Boyko et al. 2008). Using the 

SFS-based approach, population genomic data have been used to infer the DFE for many 
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organisms (Boyko et al. 2008; Kousathanas and Keightley 2013; Charlesworth 2015; Kim et al. 

2017; Tataru et al. 2017). With rare exceptions, these taxa are predominantly or obligately 

outcrossing. The SFS approach benefits from the large number of mutations, accessible with 

genome sequencing methods, that have experienced a fairly long evolutionary history in the natural 

environment. However, the utility of the SFS approach depends on the ability of analytical 

methods to use the observed standing genetic variation to correctly infer the effects of new 

mutations.  

An accurate inference of the DFE allows one to understand the evolutionary trajectory that 

mutations will follow, because the selection coefficient conferred by any given mutation (s) 

combines with the effective size of the population in which it arose (Ne) to determine the efficacy 

of selection (Nes) on that variant. The accuracy of the SFS inference method is challenged, 

however, by its sensitivity to non-equilibrium demography, population structure, and non-random 

mating (Eyre-Walker 2006). Demographic changes like population size expansions or contractions 

that mimic some effects of natural selection can lead to mischaracterization of the DFE (Eyre-

Walker and Keightley 2007). Population size changes and cryptic population structure should 

largely be accounted for with existing methods that contrast two sets of loci: one set presumed to 

be selectively neutral (e.g., four-fold degenerate sites in coding sequences) and thus reflecting 

neutral demographic change, versus a second set presumed to experience the direct effects of 

selection (e.g., zero-fold degenerate sites in coding sequences) in addition to the neutral effects of 

demography (Keightley and Eyre-Walker 2007).  

Non-random mating, of which self-fertilization is the most extreme form, presents a more 

difficult problem. Inbreeding reduces the effective recombination rate (Nordborg 1997), which 

exacerbates the effects of selection at linked loci (Cutter and Payseur 2013; Charlesworth and 
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Wright 2001; Felsenstein 1974). With reduced recombination, individual variants may no longer 

have independent evolutionary trajectories, as the fitness effects of their nearby genomic neighbors 

can play a role in changing the allele frequency of a focal variant (Hill-Robertson interference; 

Hill and Robertson 1966). How Hill-Robertson interference affects inference of the DFE from the 

SFS cannot easily be predicted a priori. Furthermore, self-fertilization also exposes more variants 

as homozygous in the population, erasing possible effects of additivity in heterozygotes. In 

outcrossing taxa, selection against deleterious alleles typically occurs in heterozygotes, because 

recent deleterious mutations will be present as rare alleles that almost always occur in heterozygous 

state. Excess homozygosity caused by self-fertilization thus means that selection on homozygous 

genotypes will be a major driver of allele frequency change with potentially profound implications 

for inference of the DFE from variant frequencies. Few studies have inferred the DFE in non-

obligately outcrossing organisms (Arunkumar et al. 2015; Huber et al. 2018), motivating deeper 

investigation into the impact of extreme selfing on DFE estimation. 

 Here, we report the DFE estimated from the SFS of a globally distributed collection of 

Caenorhabditis elegans, a nematode roundworm with a 99% to 99.9% rate of self-fertilization 

(Cutter et al. 2019). In this species, the rate of recombination varies along the holocentric 

chromosomes with low recombination in the central third of autosomes that also are gene-dense 

and enriched for essential genes (C. elegans Sequencing Consortium 1998; Rockman and Kruglyak 

2009a; Cutter et al. 2009). These features stand in stark contrast to the genomes of many 

outcrossing taxa (e.g., Drosophila and mammals), in which regions of low recombination are 

depleted of genes, especially essential genes. In C. elegans, genome architecture combines with 

selfing to cause strong linked selection (Cutter and Payseur 2003; Crombie et al. 2019; Andersen 

et al. 2012a; Thomas et al. 2015). Selfing and linked selection in C. elegans contribute to a nearly 
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100-fold reduced polymorphism relative to the hyperdiversity of obligately outcrossing congeners 

(e.g., C. remanei and C. brenneri; (Cutter et al. 2013; Dey et al. 2013)). This influence also is 

observed within the genome: nucleotide diversity in low-recombination regions is five-fold lower 

than high-recombination regions (Rockman and Kruglyak 2009a; Andersen et al. 2012b; Thomas 

et al. 2015; Lee et al. 2020). We estimate the homozygous DFE for C. elegans by the maximum 

likelihood method implemented in the DFE-alpha software (Keightley and Eyre-Walker 2007; 

Eyre-Walker and Keightley 2009). Further, we evaluate the robustness of the inferred DFE from 

simulated data that matches the genome architecture and life history of C. elegans to understand 

how the joint effects of self-fertilization, genome structure, and natural selection influence 

estimates of the DFE. 
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MATERIALS AND METHODS 

C. elegans genome-wide variant data 

The C. elegans genome-wide variant data were acquired from the C. elegans Natural 

Diversity Resource 20200815 release (Cook et al. 2017). These data were generated by aligning 

Illumina short reads from each strain to the WS276 N2 reference genome (Lee et al. 2018) and 

then calling variants using the GATK4 (v4.1.4.0) HaplotypeCaller function and recalled using the 

GenomicsDBImport and GenotypeGVCFs functions (Poplin et al. 2018). Variants were annotated 

using SnpEff (v4.3.1) (Cingolani et al. 2012). To generate the site frequency spectra, we filtered 

the CeNDR VCF to contain the recently described 328 strain set (Lee et al. 2020), but two strains 

were removed. The strain ECA701 was removed because of high levels of residual heterozygosity, 

and the strain JU1580 was removed because it was found to be in the JU1793 isotype in the 

20200815 CeNDR release. The final strain list contained 326 strains (Table S1). 

The variants for all spectra were polarized using the XZ1516 strain as the ancestor, so this 

strain is not included in any spectra. For each SFS, we further pruned the VCF to contain only sites 

with no missing genotype data and with allele frequencies greater than 0%. We generated 18 SFS 

that encompass three different subsets of C. elegans strains, three different genomic regions, and 

two different site class comparisons. For the three different subsets of C. elegans strains, we used 

(1) the entire population sample (n = 325, 326 minus XZ1516), (2) the subset of “swept” strains 

(n = 273), and (3) the subset of “divergent” strains (n = 52). We classified a strain as “swept” if 

any of chromosomes I, IV, V, or X contained greater than or equal to 30% of the same haplotype 

(Andersen et al. 2012). Any strains not among the swept strains were classified as “divergent” 

(Table S1). For the three different genomic regions, we used (1) the whole genome, (2) high 

recombination chromosome arms, or (3) low recombination chromosome centers, as defined 
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previously (Rockman and Kruglyak 2009). For the two different site class comparisons within 

coding sequences, we used (1) 4-fold vs 0-fold degenerate sites only or (2) 4-fold vs the 

combination of 0-fold degenerate sites and sites annotated as causing high or moderate deleterious 

effects as predicted by SnpEff (Cingolani et al. 2012). The R package SeqinR (Charif and Lobry 

2007) was used to parse gene positions and a custom script was used to classify the degeneracy of 

each non-variant site as 0- or 4-fold degenerate. We counted the number of 0- and 4-fold 

degenerate sites that were invariant and included these sites as the 0% derived allele frequency 

class in each spectrum. We generated BED files (Quinlan and Hall 2010) of 0- and 4-fold 

degenerate sites using a custom AWK script that categorizes the alleles as ancestral or derived, 

into specific chromosomal regions, and by their predicted SnpEff effects. We then used vcfanno 

(Pedersen et al. 2016) to append these annotations to the original VCF file (Danecek et al. 2011). 

The annotated variant data was extracted from the VCF to a tab-separated file using BCFtools (Li 

2011). This file was used to generate the 18 site-frequency spectra (File S1-S18).  

Simulation of site frequency spectra with SLiM 

We used SLiM v2.1 (Haller and Messer 2019) to conduct forward-in-time simulations 

mimicking key features of C. elegans genome structure and life history. We simulated a single 

population with non-overlapping generations. Population size was constant in a given simulation 

with 99.9% of reproduction occurring via self-fertilization, as well as a comparison set of 

simulations with full outcrossing (N = 50,000 for outcrossing simulations and N = 500,000 in 

selfing populations; see Table S1). We generated a 24 Mb genome to represent the coding fraction 

of 100 Mb C. elegans genome, divided into six 4 Mb chromosomes comprising 1.44 Mb left and 

right arms and a 1.12 Mb center region (C. elegans Sequencing Consortium 1998). Recombination 

varied between the arms and centers of each chromosome: 2.35 × 10-7 crossovers per base pair per 
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generation in arms, 4.96 × 10-8 crossovers per base pair per generation in centers (Rockman and 

Kruglyak 2009b). We simulated mutations to arise at a uniform rate across the genome (3.3 × 10-

9 mutations per base pair per generation, or approximately 0.08 mutations per simulated genome 

per generation), with 75% of mutations subject to selection and the remaining 25% neutral to match 

the incidence of replacement- and synonymous sites in coding sequences (Saxena et al. 2019). Of 

the 75% of mutations with fitness effects, simulation sets created either all selected mutations as 

deleterious or as 99.9% deleterious plus 0.1% beneficial. Beneficial mutations had a gamma-

distributed DFE with mean selection coefficient s = 0.01, shape parameter β = 0.3, and additive 

effects (h = 0.5). The deleterious mutational effects followed a mixture of two gamma distributions 

to best match the hypothesis for biologically realistic DFEs. Most of this mixture distribution 

(95%) was defined by a gamma distribution made up of many nearly neutral deleterious mutations 

with mean s = -0.001, shape β = 0.3, and dominance, h = 0.3. The remaining 5% of the distribution 

of deleterious fitness effects came from a gamma distribution comprising mutations with strong 

and more recessive effects to imitate the existence of recessive lethals with mean s = -0.01, β = 

0.3, and h = 0.2. We also conducted a second set of simulations with a more extreme DFE for 

deleterious mutations: a single gamma distribution with s = -0.161, β = 2.13, and h = 0.3 to serve 

as an example from a more severely deleterious distribution of mutations, similar to that inferred 

from the empirical C. elegans dataset. 

DFE inference with DFE-alpha 

We used DFE-alpha (Keightley and Eyre-Walker 2007) to infer the DFE by maximum 

likelihood from both the empirical and simulated datasets. We then compared the DFE derived 

from the empirical and simulated datasets to test for deviations between the inferred DFEs that 

might result from inaccurate or oversimplified genomic architectures and evolutionary parameters. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.10.26.355446doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355446
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 of 31 
 

We then conducted a second set of simulations that used DFE parameters inferred from the 

empirical data as input for the simulations, re-estimated the simulated DFE, and tested whether we 

could accurately recover this underlying DFE. We also compared the DFE inferred for 

polymorphisms linked to different chromosome regions (arms versus centers). We used DFE-alpha 

with the two-epoch model and the folded site frequency spectrum, as recommended by the DFE-

alpha documentation and also as is commonly used across empirical applications of the method. 

We also averaged the site frequency spectrum across three sampling points in the simulations, at 

generations 4N, 4.5N, and 5N prior to applying the inference approach as performed previously 

(Messer and Petrov 2013). 

Data availability 

The authors state that all data necessary for confirming the conclusions presented in the article are 

represented fully within the article. All data and methods required to confirm the conclusions of 

this work are within the article, figures, and supplemental materials. SFS data from C. elegans 

strains is additionally archived on GitHub at: 

https://github.com/Thatguy027/SFS_Invariant_Sites/tree/master/2020_SFS_Analysis/Paper_File

s/manuscript_spectra 

RESULTS 

We first used DFE-alpha to estimate the distribution of deleterious fitness effects from the 

genomes of 325 strains of C. elegans. Across all subsets of the data, the inferred distributions show 

the highest densities for strongly deleterious mutations, with mutations of weakest effect being 

second most prevalent. For analyses using only the 4- and 0-fold degenerate sites designated as 

neutral or selected, respectively, 62.5% of mutations fall into the most severely deleterious class 
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and 17.3% into the weakest, nearly neutral deleterious class (whole genome; Figure 1A). 

Chromosome arms and centers have qualitatively similar profiles, but with arms exhibiting a 

somewhat greater density of highly deleterious mutations (Figure 1). We also inferred the DFE 

using a more sophisticated categorization of selected sites beyond simply 0-fold degenerate 

positions of coding sequences. In this approach, we predicted deleterious functional effects of 

variants (SnpEff, see Methods), including stop-gained, splice-site, and non-synonymous variants. 

The overall profile for the DFE in these cases exhibited decreased weight in the strongest 

deleterious class (49.7% of mutations for the whole genome) at the expense of more sites of weakly 

deleterious effects being inferred (23.2% for the whole genome; Figure 1B). Again, chromosome 

arms showed a greater relative weight in the most deleterious class compared to chromosome 

centers.  
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Figure 1. DFE inference for C. elegans based on coding sequence polymorphism from genomes 

of 325 strains. Site frequency spectra of polymorphisms derive from the whole genome (purple) 

or separately for coding sequences in chromosome arms (blue) and centers (red), defined by 

recombination rate boundaries (Rockman and Kruglyak 2009a). The neutral and selected classes 

for site frequency spectra provided to DFE-alpha correspond to 4-fold degenerate sites and 0-fold 

degenerate sites, respectively (A). An alternative selected site class also included the sites 

characterized as having variants exerting high or moderate fitness effects by SnpEff (B). All 

estimated parameters of the inferred DFE are listed in Table 1. 

To assess the reliability of these DFE inferences from standing variation under extreme 

selfing, we conducted a series of forward-time simulations that mimic C. elegans genome 

architecture and reproduction. Inference of the DFE from simulated data sets, where the true input 

DFE is known, resulted in different inferred estimates than expected from the input mixture gamma 

distribution (Figure 2A; Supplementary Table 2). This inferred distribution comprised almost 

entirely nearly neutral mutations (-Nes = 0-1), regardless of linkage to chromosome arms or centers 

(Figure 2A). These results also differed starkly from what we observed for the empirical C. elegans 

results. Our second set of simulations used a more strongly deleterious input DFE, similar to, but 

more extreme than, the DFE inferred from the C. elegans data. In our simulations with high selfing, 

DFE-alpha was better able to estimate the input DFE for this mutational spectrum that was 

weighted toward strongly deleterious mutations (Figure 2B). Curiously, however, it showed a U-

shaped distribution with excess density in the nearly neutral class relative to the input (Figure 2B), 

reminiscent of the pattern observed in the empirical analysis of C. elegans genomes (Figure 1).  
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Figure 2. Distributions of deleterious fitness effects for simulations mimicking C. elegans genome 

structure and selfing reproductive mode. (A) The inferred DFEs for deleterious mutations (colored 

bars) from simulations with an input DFE (gray bars) of a mixture gamma distribution (β = 0.3 for 

95% mutations with mean s = -0.001 and h = 0.3 plus 5% with mean s = -0.01 and h = 0.2). (B) 

Inferred DFEs for a more extreme, deleterious gamma distribution of mutational input (β = 2.13, 

mean s = -0.161, h = 0.3), similar to that of the inferred DFE from the empirical data. Larger values 

of -Nes are more deleterious; simulation census size N = 500,000; selfing rate 99.9%; SFS are 

averaged over generations 4N, 4.5N, and 5N. All estimated parameters of the inferred DFE are 

listed in Table S2. 

To further elucidate the impact and potential biases introduced by selfing on our DFE 

inferences, we contrasted simulations that differed only in reproductive mode: 99.9% selfing 

(Figure 2) versus 100% outcrossing (Figure 3). We found that the inferred DFE much more 

accurately matches the known input DFE for the simulations under a regime of full outcrossing 

(Figure 3) as opposed to high selfing. Both the mixture gamma DFE and the extreme DFE that we 

simulated matched well to the input mutational spectra under a regime of outcrossing, compared 

to the extremely poor match to the mixture DFE for highly selfing populations (Figure 2 cf. Figure 
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3). Nevertheless, the gene dense and low recombining chromosome centers exhibited an inferred 

DFE shifted toward weaker fitness effects even in these purely outcrossing simulations. 

 

Fig 3. DFE inferences from simulations of fully outcrossing individuals. Genetic properties are 

otherwise equivalent to the selfing simulations shown in Figure 2, but with census size N = 50,000 

instead of 500,000 (hence the difference in expectation of the gray bars from Figure 2). Panel (A) 

shows results of simulations using the mixture gamma distribution while panel (B) corresponds to 

simulations of an input DFE that includes greater incidence of highly deleterious mutations. SFS 

are averaged over generations 4N, 4.5N, and 5N. All estimated parameters of the inferred DFE are 

listed in Table S2. 

We hypothesized that a subset of C. elegans strains might contribute to a perturbed DFE 

because they are hypothesized to have experienced selective sweeps that impacted large portions 

of the genome (Andersen et al. 2012). When we compared the DFE inferred using data from the 

273 “swept” strain subset to the DFE inferred using data from the 52 non-swept “divergent” strain 

subset, we did not observe a drastic difference in DFE shapes for the whole genome analyses 

(Figure 4). Qualitatively, both subsets of the data showed the largest proportion of deleterious 
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mutations in the strongest selection class and the second most abundant mutations to be in the 

weakest selection class (Figure 4). For chromosome centers, however, the swept strain subset 

showed a less strongly “U-shaped” distribution, instead having the second most weight for 

intermediate effect deleterious mutations (-Nes = 10-100; Figure 4B). Using the SFSs that included 

sites specified by SNPeff further exacerbated the DFE shift toward weaker fitness effects in 

chromosome centers for swept strains (Figure 4C,D). This pattern of weaker mutational effects 

inferred for the strains and genomic regions most impacted by selective sweeps suggests that 

linked selection influences the DFE inference.  
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Figure 4. DFE inferences from subsets of C. elegans strains. (A, C) DFEs based on 273 “swept” 

strains with >30% of the genome showing strong influence of linked selection (Andersen et al. 

2012). (B, D) DFEs based on 52 “divergent” strains with no evidence of selective sweeps across 

their genomes (see Methods). A and B show inferences that used only 0- versus 4-fold sites 

whereas C and D include sites designated as exerting high or moderate effects by SnpEff in the 

selected class. All estimated parameters of the inferred DFE are listed in Table 1. 

We also hypothesized that the presence or absence of beneficial mutational input might 

complicate inference of the DFE in the context of selfing-induced homozygosity and linked 
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selection because DFE-alpha only infers the DFE for deleterious mutations. Therefore, we tested 

whether the inclusion or exclusion of beneficial mutations in the simulations impacted the inferred 

DFE under high selfing. We observed that the presence of beneficial mutations most strongly 

influenced the fraction of mutations in the weak and intermediate fitness effect classes (-Nes = 0-

1 and 1-10), shifting the inferred DFE toward a greater density of weakly deleterious effects 

relative to simulations that lacked any beneficial mutations (Figure 5). The pattern for chromosome 

centers contrasted starkly with chromosome arms and the whole genome when only deleterious 

mutations were present, exhibiting a more even distribution across all greater deleterious effect 

classes but still retaining a large proportion of mutations in the nearly neutral class (Figure 5B). 

Finally, we tested whether DFE inferences using the unfolded SFS might better match the expected 

DFE, but found no clear improvement relative to the performance of DFE-alpha using the folded 

SFS (Figure S1). 
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Figure 5. The DFE inferred from simulations with both deleterious and beneficial mutations (A, 

as in Figure 2A), or with deleterious mutations only (B). Simulation parameters as in Figure 2. 

SFS are averaged over generations 4N, 4.5N, and 5N. All estimated parameters of the inferred DFE 

are listed in Table S2. 

 

 

 

Table 1. Inferred parameters of the DFE for the empirical C. elegans dataset using DFE-alpha.  

The mean selection coefficient (Es) is not scaled by effective population size (i.e., not Nes).  

Mean (absolute) selection coefficients greater than 1 reflect the long tail of a leptokurtic gamma 

distribution.  See Keightley and Eyre-Walker 2007 for explanation and further interpretation.  
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DISCUSSION 

Population genomic data, in principle, provide a rich collection of allelic variation from which to 

infer the distribution of fitness effects (DFE) for mutational input into populations. Accurate 

estimation of the DFE from such data can be complicated by population demography that differs 

from equilibrium, due to growth or decline in population size, although methods implemented in 

inference algorithms attempt to minimize such demographic biases (Keightley and Eyre-Walker 

2007; Boyko et al. 2008; Tataru et al. 2017). The influence of non-random mating on DFE 

inference, however, remains incompletely understood. Our exploration of the DFE for 

deleterious mutations in C. elegans, using genome sequences for 326 wild isolates combined 

with biologically motivated simulations, demonstrates that extreme self-fertilization can 

compromise accurate inference of the DFE. 

 

Based on naive application of DFE-alpha to infer C. elegans’ DFE, one would conclude that 

mutational effects exert predominantly strong deleterious consequences on fitness. However, we 

showed that, when simulating conditions that mimic C. elegans’ genome architecture and its 

extreme 99.9% selfing mode of reproduction, the same inference algorithm does not always 

recover the input DFE. This discrepancy is not a general problem with the method, as 

simulations under random mating or less extreme selfing do successfully recover the input DFE. 

This contrast highlights the skew that a highly selfing mating regime can cause for inferred 

DFEs. Recent work in self-compatible Eichhornia found that the DFE could be recovered 

adequately with 98% selfing (Arunkumar et al. 2015), implying that the breakdown of the DFE 

inference arises toward the extreme of selfing seen in C. elegans. Using an alternative inference 

method, previous results indicated that a scaled additive model could be applied for the case of 
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97% selfing in Arabidopsis (Huber et al. 2018), though our results again suggest that such an 

assumption may break down with more extreme selfing. Both of these studies in plants benefited 

from calibrating their analysis of selfing populations with a close outgroup that is fully 

outcrossing. Although C. elegans lacks a known outgroup that would be appropriate to use in 

this way, future analysis of the DFE for the selfing C. briggsae in combination with its close 

outcrossing relative C. nigoni is promising for this comparative approach. 

 

Our simulations show that the extreme selfing of C. elegans interacts with the shape of the DFE 

such that some distributions show a greater disparity between the DFE input by mutation and the 

output DFE inferred from polymorphism. This discrepancy depends on at least two factors: the 

nature of the underlying DFE (weighted to a more negative extreme versus weighted to a more 

nearly neutral distribution), and linkage between beneficial and deleterious variants. Dominance 

plays little role in the evolutionary fate of mutations in highly selfing populations, because new 

mutations become homozygous after only a few generations. As a consequence, selfing is 

thought to more effectively purge large-effect deleterious recessive mutations as compared to 

nearly additive weak-effect mutations (Charlesworth and Charlesworth 1998). This differential 

purging might induce the DFE inferred from polymorphism data to show an abundance of 

variants with nearly neutral deleterious effects, as we have seen for our simulations of high 

selfing leading to poor recovery of the underlying DFE when that distribution contained 

mutations over a wide range of effects (Figure 2A). Only under a simulated DFE where the vast 

majority of mutations entering the population are highly deleterious does the DFE inference 

appropriately recover the underlying distribution (Figure 2B), likely because few or no weakly 

deleterious mutations are segregating in the population at all. Indeed, our selfing simulations and 
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C. elegans analysis both show high densities of mutations in either the highest or the lowest 

deleterious fitness class of mutations and few mutations of intermediate effect (Figure 1, Figure 

2). 

 

The effect of linkage between selected variants on the DFE inference is detectable from both our 

empirical and simulation datasets. Comparison of our “swept” versus “divergent” empirical data 

subsets reveals a pattern of weaker mutational effects inferred for the strains and genomic 

regions most impacted by selective sweeps (i.e., chromosome centers in swept strains). 

Considering chromosome arm and center regions separately also reflects the stark difference in 

recombination rate and gene density found between these regions in the C. elegans genome (C. 

elegans Sequencing Consortium 1998; Cutter et al. 2009; Rockman and Kruglyak 2009). This 

chromosomal heterogeneity leads to profound effects of linked selection in chromosome centers 

(Cutter and Payseur 2003; Andersen et al. 2012; Crombie et al. 2019), which we hypothesized 

might influence DFE inference. Indeed, we found that the inferred DFE tended to shift towards 

weaker-effect mutations in chromosome centers. To some extent, this effect was apparent even 

in simulated genomes with full outcrossing. However, we observed the most substantial 

differences between arm and center regions in our analysis of the subset of C. elegans data from 

strains that show selective sweeps that span nearly two-thirds of the genome. DFE-alpha can 

therefore account for modest perturbations due to linked selection within its demographic 

correction by approximating this influence as a reduction in effective population size (Keightley 

and Eyre-Walker 2007). The magnitude of effects from linked selection in C. elegans (Andersen 

et al. 2012; Thomas et al. 2015; Cutter and Payseur 2003), however, appear too extreme to be 

adequately accounted for in this way.  
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Furthermore, inclusion or exclusion of beneficial mutations in our simulations also 

greatly impacted the inferred DFE. The distribution inferred in all of our scenarios by DFE-alpha 

is that of deleterious mutations only, yet for the same input deleterious DFE, we can observe 

different inferences based on the presence or absence of beneficial mutations entering the 

population. In the presence of linkage between deleterious and beneficial variants, the inferred 

DFE for deleterious mutational effects is shifted to a more weakly deleterious distribution overall 

(Figure 5A cf. 5B). The difference in inference between simulated arms and centers of the 

genome also clearly shows this pattern of a greater weight for weakly deleterious mutations in 

the lower-recombining regions of the chromosome centers.  

 

We conclude that the disparities between mutational input and the DFE inferred from site 

frequency spectra are caused by linked selection that is exacerbated by selfing. The 

consequences of linked selection are even further exacerbated by C. elegans’ genome structure 

with gene-dense and low recombination chromosome centers. The impact of linked selection on 

the DFE inference was not due to underlying mutational differences along chromosomes, as 

centers and arms did not differ in selective effects of mutations in our simulations. The 

correction for demographic change implemented in DFE-alpha does not seem able to 

accommodate the degree of linked selection resulting from the extreme selfing experienced by C. 

elegans, since this correction only modulates the effective population size in an attempt to 

accommodate the presence of non-standard population conditions. The high values of N2 (the 

effective population size during the second epoch estimated by DFE-alpha and used for scaling 

the selection coefficient; see Table 1) capped at 1000 estimated during the DFE inference may 

reflect this poor fit to the demographic model due to selfing and linked recombination and thus 
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the poor inferences of the DFE. Such an inability to fully account for the effects of strong linked 

selection conforms with the fact that the influence of selection on a genomic region is 

imperfectly approximated by a scaled effective population size (Kaiser and Charlesworth 2009; 

Neher 2013). Similar to Messer and Petrov (2013), we find that this bias causes genomic regions 

most impacted by linked selection to show an inferred DFE of weaker fitness effects. This 

problem is likely to be especially acute for populations that experience high rates of selfing. 

 

As we strive to understand more about the role of deleterious mutations in evolution and the 

prevalence and distribution of their fitness effects, inferring the DFE in long-standing model 

systems is an essential first step towards a comprehensive understanding of the mutational 

process and the impacts of selection, demography, and genomic architecture on the fate of new 

mutations. We emphasize the difficulties that can be encountered when applying existing 

methods for inferring the DFE to non-standard population conditions, in particular for the 

extreme of non-random mating reflected by the high selfing of C. elegans. This challenge 

highlights the need for integration of empirical and theoretical approaches, and new methods, to 

account for perturbing effects of linked selection and non-random mating to generate a fuller 

understanding of the mutational processes that underlie the evolution of populations in the wild. 
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SUPPLEMENTARY FIGURES 

 

Figure S1. DFE-alpha analysis of simulated datasets using unfolded SFS as input (A, C) versus 

the folded SFS as input (B,D, as in Figure 5). These analyses performed more poorly than folded 

analyses at matching the input DFE (gray bars), particularly when simulations only included 

deleterious mutations (C,D), so therefore were not used in further analyses. All estimated 

parameters of the inferred DFE are listed in Table S2. 
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Table S1. The set of 326 C. elegans strains used in this study, and their classification as “swept” 

or “divergent” (see main text Methods for details). 

strain strain_set strain strain_set strain strain_set strain strain_set 

AB1 swept EG4946 swept JU3134 swept NIC268 divergent 

BRC20067 swept GXW1 swept JU3135 swept NIC269 swept 

BRC20263 swept JT11398 swept JU3137 swept NIC271 swept 

CB4851 swept JU1088 swept JU3140 swept NIC272 swept 

CB4852 swept JU1172 swept JU3141 swept NIC274 swept 

CB4853 swept JU1200 swept JU3144 swept NIC275 swept 

CB4854 swept JU1212 swept JU3166 swept NIC276 swept 

CB4855 swept JU1213 swept JU3167 divergent NIC277 swept 

CB4856 divergent JU1242 swept JU3169 swept NIC3 swept 

CB4857 swept JU1246 swept JU3224 swept NIC501 swept 

CB4858 swept JU1249 swept JU3225 swept NIC511 swept 

CB4932 swept JU1395 swept JU3226 divergent NIC513 swept 

CX11254 swept JU1400 swept JU3228 swept NIC514 swept 

CX11262 swept JU1409 swept JU323 swept NIC515 swept 

CX11264 swept JU1440 swept JU3280 swept NIC522 swept 

CX11271 swept JU1491 swept JU3282 swept NIC523 swept 

CX11276 swept JU1530 swept JU3291 swept NIC526 swept 

CX11285 swept JU1543 swept JU346 swept NIC527 swept 

CX11292 swept JU1568 swept JU360 swept NIC528 swept 

CX11307 swept JU1581 swept JU367 swept NIC529 swept 

CX11314 swept JU1586 swept JU393 swept PB303 swept 

CX11315 swept JU1652 swept JU394 swept PB306 swept 

DL200 swept JU1666 swept JU397 swept PS2025 swept 

DL226 swept JU1792 swept JU406 swept PX179 swept 

DL238 divergent JU1793 swept JU440 swept QG2075 swept 

ECA189 divergent JU1808 swept JU561 swept QG2811 swept 

ECA191 divergent JU1896 swept JU642 swept QG2813 swept 

ECA347 divergent JU1934 swept JU751 swept QG2818 swept 

ECA348 swept JU2001 swept JU774 swept QG2823 swept 

ECA349 swept JU2007 swept JU775 swept QG2824 swept 

ECA36 divergent JU2016 swept JU778 swept QG2825 swept 

ECA363 divergent JU2017 swept JU782 swept QG2827 swept 

ECA369 divergent JU2106 swept JU792 swept QG2828 swept 

ECA372 divergent JU2131 swept JU830 swept QG2832 swept 

ECA396 divergent JU2141 swept JU847 swept QG2835 swept 

ECA592 swept JU2234 swept KR314 swept QG2836 swept 

ECA593 divergent JU2250 swept LKC34 swept QG2837 swept 

ECA594 swept JU2257 swept MY1 swept QG2838 swept 

ECA640 swept JU2316 divergent MY10 swept QG2841 swept 

ECA703 divergent JU2464 swept MY16 divergent QG2843 swept 

ECA705 divergent JU2466 swept MY18 swept QG2846 swept 

ECA706 divergent JU2478 swept MY2147 swept QG2850 swept 
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ECA710 divergent JU2513 swept MY2212 swept QG2854 swept 

ECA712 divergent JU2519 swept MY23 divergent QG2855 swept 

ECA722 divergent JU2522 swept MY2453 swept QG2857 swept 

ECA723 divergent JU2526 divergent MY2530 swept QG2873 swept 

ECA724 divergent JU2534 swept MY2535 swept QG2874 swept 

ECA730 divergent JU2565 swept MY2573 swept QG2875 swept 

ECA732 divergent JU2566 swept MY2585 swept QG2877 swept 

ECA733 divergent JU2570 swept MY2693 swept QG2932 swept 

ECA738 divergent JU2572 swept MY2713 swept QG536 swept 

ECA740 divergent JU2575 swept MY2741 swept QG556 swept 

ECA741 divergent JU2576 swept MY518 swept QG557 swept 

ECA742 divergent JU2578 swept MY679 swept QW947 swept 

ECA743 divergent JU258 swept MY772 swept QX1211 divergent 

ECA744 divergent JU2581 swept MY795 swept QX1212 swept 

ECA745 divergent JU2586 swept MY920 swept QX1233 swept 

ECA746 divergent JU2587 swept N2 swept QX1791 divergent 

ECA760 divergent JU2592 swept NIC1 swept QX1792 swept 

ECA768 divergent JU2593 swept NIC1049 swept QX1793 divergent 

ECA777 divergent JU2600 swept NIC1107 swept QX1794 divergent 

ECA778 divergent JU2610 swept NIC1119 swept RC301 swept 

ECA807 divergent JU2619 swept NIC166 swept WN2001 swept 

ECA812 divergent JU2800 swept NIC195 swept WN2002 swept 

ECA923 swept JU2811 swept NIC199 swept WN2033 swept 

ECA928 swept JU2825 swept NIC2 swept WN2050 swept 

ECA930 swept JU2829 swept NIC207 swept WN2063 swept 

ED3005 swept JU2838 swept NIC231 swept WN2064 swept 

ED3011 swept JU2841 swept NIC236 swept WN2066 swept 

ED3012 swept JU2853 swept NIC242 swept XZ1513 divergent 

ED3017 swept JU2862 swept NIC251 divergent XZ1514 divergent 

ED3040 swept JU2866 swept NIC252 swept XZ1515 swept 

ED3046 swept JU2878 swept NIC255 swept XZ1516 ancestor 

ED3048 swept JU2879 swept NIC256 swept XZ1672 swept 

ED3049 swept JU2906 swept NIC258 swept XZ1734 swept 

ED3052 swept JU2907 swept NIC259 swept XZ1735 swept 

ED3073 swept JU310 swept NIC260 swept XZ1756 swept 

ED3077 swept JU311 swept NIC261 swept XZ2018 swept 

EG4347 swept JU3125 swept NIC262 swept XZ2019 divergent 

EG4349 swept JU3127 swept NIC265 divergent XZ2020 swept 

EG4724 swept JU3128 swept NIC266 swept   
EG4725 swept JU3132 swept NIC267 swept   
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Table S2. Inferred parameters of the DFE for the simulated datasets using DFE-alpha, averaged 

over 20 replicate simulations in each row. 
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