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Abstract 
Tracking small laboratory animals such as flies, fish, and worms is used for phenotyping in 
neuroscience, genetics, disease modelling, and drug discovery. Current imaging systems are 
limited either in spatial resolution or throughput. A system capable of imaging a large 
number of animals with sufficient resolution to estimate their pose would enable a new class 
of experiments where detailed behavioural differences are quantified but at a scale where 
hundreds of treatments can be tested simultaneously. Here we report a new imaging system 
consisting of an array of six 12-megapixel cameras that can simultaneously record from all 
the wells of a 96-well plate with a resolution of 80 pixels/mm at 25 frames per second. We 
show that this resolution is sufficient to estimate the pose of nematode worms including head 
identification and to extract high-dimensional phenotypic fingerprints. We use the system to 
study behavioural variability across wild isolates, the sensitisation of worms to repeated blue 
light stimulation, the phenotypes of worm disease models, and worms’ behavioural responses 
to drug treatment. Because the system is compatible with standard multiwell plates, it makes 
computational ethological approaches accessible in existing high-throughput pipelines and 
greatly increases the scale of possible phenotypic screening experiments in C. elegans. 
 
  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 13, 2021. ; https://doi.org/10.1101/2021.04.16.440222doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.440222
http://creativecommons.org/licenses/by/4.0/


Introduction 
Recording and quantifying animal behaviour is a core method in neuroscience, behavioural 
genetics, disease modelling, and psychiatric drug discovery. Both the scale of behaviour 
experiments and the information that can be extracted from them have increased 
dramatically1–4. However, further increases in throughput are possible and would enable 
entirely new kinds of experiments. We therefore sought to build a system to image freely 
behaving animals that would maximise both phenotypic content and experimental 
throughput. In terms of phenotypic content, a key parameter is the resolution of the recording. 
If there is sufficient spatial and temporal resolution, then body parts can be identified and 
tracked, the animal’s pose can be estimated, and the full suite of computational ethology 
methods can be applied to analyse any behaviour of interest. Because of its simple 
morphology, detailed pose estimation is well-established for the roundworm C. elegans5–18 
and previous work has shown the usefulness of detailed behavioural phenotyping in several 
domains including, for example, classifying mutants5,6,19,20, studying chemotaxis21 and 
thermotaxis22, quantifying escape responses23–25, and addressing basic questions in 
computational ethology and the physics of behaviour10,26,27. Maintaining sufficient resolution 
for pose estimation was therefore the first design constraint we required. In early worm 
trackers, maintaining high resolution required a motorised stage to keep a single worm in the 
field of view of a low-resolution camera5,28,29, but the availability of inexpensive megapixel 
cameras enabled multiworm tracking with sufficient resolution to estimate each worms’ pose 
and determine its head position12,17. 
 
To maximise experimental throughput, we wanted to use off-the-shelf multiwell plates so that 
any behaviour screening pipeline would still be compatible with existing pipeline elements 
such as liquid and plate-handling robots as well as small animal sorting machines. Because 
behaviour occurs over time, a standard plate-scanning approach in which each well of a 
multiwell plate is imaged in turn using a motorised stage limits throughput regardless of scan 
speed since each well must be recorded long enough to observe the behaviour of interest. 
Moreover, mechanical arrangements with moving parts introduce higher maintenance costs 
and have a higher risk of failure compared to a static camera system. Therefore, our second 
design constraint was that the system should be able to image all of the wells of a multiwell 
plate simultaneously without move parts.  
 
Our solution to simultaneously image a large area with high resolution was to use an array of 
machine vision cameras that are small enough to be arranged in close proximity to one 
another with partially overlapping fields of view at a resolution sufficient to track small 
animal pose. Here we present the design of an array of six 12-megapixel cameras that uses a 
near-infrared light panel for illumination, a set of high intensity blue LEDs for 
photostimulation, and the associated open-source software for automatically identifying wells 
and keeping track of metadata. The software is fully integrated into our existing Tierpsy 
Tracker software17, including a graphical user interface for reviewing tracking data, joining 
trajectories, and annotating problematic wells to discard from analysis as well as a neural 
network for distinguishing worms from non-worm objects. We demonstrate the potential of 
the new tracking system in neuroscience, disease modelling, genetics, and phenotypic drug 
screening. 
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Results 
 
Megapixel camera array design 
Based on our previous work with single-worm tracking13, we set a target resolution of at least 
75 pixels/mm and a recording rate of 25 frames per second in order to accurately estimate 
worm pose and identify the head from the tail which requires the measurement of the small 
head swinging behaviour that is often referred to as ‘foraging’ in the worm community. 
These constraints require a total of 8100 x 5400 pixels, or about 44 megapixels with a 3:2 
aspect ratio, to cover a standard 96-well plate. Single cameras with this resolution that can 
record at 25 frames per second are not available commercially. We therefore considered 
arrays of cameras and found that six Basler acA4024 cameras (Basler AG, Ahrensburg, 
Germany) in a 3x2 array equipped with Fujinon HF3520-12M lenses (Fujifilm Holding 
Corporation, Tokyo, Japan) was an optimal solution: This combination of lenses and cameras 
allowed mounting the cameras in close proximity, whereas cameras with higher resolution or 
larger sensors would have required significantly larger lenses. Imaging a multiwell plate with 
multiple cameras significantly reduces the blind spots caused by vertical separators between 
wells, compared with using a single camera with a conventional lens. A similar effect could 
be obtained by using a single camera with a telecentric lens, but the multi-camera approach 
remains a more compact and cost-effective way of achieving the required resolution. To 
provide uniform illumination whilst mitigating light-avoidance response, we used a dedicated 
light system using 850 nm LEDs (Loopbio GmbH, Vienna, Austria). To avoid edge effects, it 
is important that the light panel is larger than the area to be imaged. Blue light stimulation is 
provided by a custom LED array (Marine Breeding Systems, St. Gallen, Switzerland) using 
four Luminus CBT-90 TE light-emitting diodes (bin J101, 456 nm peak wavelength, 10.3W 
peak radiometric flux each). The camera lenses are equipped with long pass filters 
(Schneider-Kreuznach IF 092, Schneider-Kreuznach, Germany, and Midopt LP610, Midwest 
Optical Systems Inc, Palatine, IL, USA) to block the photostimulation light while allowing 
the brightfield IR signal to reach the camera sensors. A schematic of the imaging system is 
shown in Figure 1A-C. To further increase throughput, we built five units of the camera 
arrays which can be operated in parallel (Kastl-High-Res, LoopbBio GmbH, Vienna, 
Austria).  
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Figure 1: Schematic of megapixel camera arrays. A) Five identical camera arrays were mounted on an air 
supported table. The associated workstations to run the Motif software were arranged in the two server racks 
underneath. B) 3D schematic drawing of a single imaging unit (Kastl – Highres). The six cameras were mounted 
on a plate that is connected to the rig frame by three spring-loaded screws, and can be moved along the vertical 
axis. This allows for changing the focal plane of all six cameras at once. One of the imaging unit’s side panels is 
omitted from this view. C) Technical drawing of an imaging unit annotated with dimensions in millimetres. D) 
Using five identical units, 480 wells can be recorded simultaneously. Zooming in to the E) camera, F) well, G) 
and worm level shows that this system achieves enough resolution to precisely track the nematodes. Each square 
well measures 8 x 8 mm. 

Choice of suitable multiwell plate design  
Because the fields of view of the six cameras partially overlap, the imaging system provides 
flexibility in selecting a multiwell plate with any number of wells. For our purposes, 96-well 
plates with square wells provided a good balance between imaging area and number of wells 
(Figure 1D, E). Plates with smaller numbers of wells would reduce imaging throughput 
while 96-well plates with circular wells would reduce the area available for worms to behave 
and increase shadowing around the well edges (Supplementary Figure 1A). Using square 
well plates (Whatman 96 well plate with flat bottom, GE Healthcare, Chicago, IL, USA) 
significantly increases the efficiency of the system: in our tests, in plates with circular wells 
only 21% of the imaging area is available for capturing useful data, while the rest is outside 
of any well or lost in shadows. For square wells, 43% is available for behaviour. This fraction 
can be further increased by using custom plates with thinner wall dividers and shallower 
wells to reduce the shadowing (Supplementary Figure 1B), but this comes at an increased 
cost of manufacture. 
 
The output of the combined system is 30 videos tiling across the five imaged multiwell plates 
corresponding to 480 simultaneous behaviour assays (Figure 1D). Expanding the image to 
the level of a single well (Figure 1F) and a single animal (Figure 1G) shows that the 
resolution is sufficient to estimate the pose and identify the head of single worms, which can 
reveal detailed trajectory differences between individuals that are the basis for quantitative 
behavioural phenotyping. 
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High throughput imaging 
Due to the high amount of raw image data produced by USB3 cameras at full bandwidth (6 
cameras recording at 25 fps produce approximately 6.5TB/hour of raw footage), live 
compression on a dedicated system was required. To achieve this, we used a total of 10 Motif 
Recording Units (Motif - Video Recording System, LoopbBio GmbH, Vienna, Austria) 
equipped with Nvidia Quadro P2000 GPUs (Nvidia Corporation, Santa Clara, CA, USA), 
each recording from 3 cameras. The two recording units with cameras from the same system 
were set up in a parent-child configuration.  
 
The Motif software acquires and compresses images on the fly and stores them in the open 
imgstore format (https://github.com/loopbio/imgstore) along with timestamps and frame 
numbers for each individual frame, as well as continuous and synchronised recordings of 
environmental data (for each unit this was: outside temperature and inside temperature, 
humidity, and light level). Recording the time and frame number for each image allows 
precise timekeeping over a long recording duration as it removes temporal drift due to 
skipped or dropped frames and due to differences in camera clocks. Additional metadata for 
each recording is saved with the imgstore including the camera serial numbers, camera and 
system settings, and any user defined data.  
 
A single workstation manages all imaging experiments on all units across the whole system, 
from video collection to data transfer, by accessing the Motif user interfaces using the web-
browser of the parent machines in the camera arrays. Given the large number of high-
resolution cameras, the control workstation was connected to a large monitor (we use a 43-
inch 4k monitor) to facilitate camera focussing and sample positioning. 
 
In addition to providing a web accessible user interface, Motif allows complete control of the 
camera arrays and arbitrarily complex scheduling of data acquisition and photostimulation 
programmatically, via an API (https://github.com/loopbio/python-motifapi). This allows us to 
run imaging experiments on all camera arrays by executing a single Python script on the 
monitoring workstation. Encoding the parameters of experiments in a script improves 
reproducibility by making parameters consistent over time by default. 
 
Updates to Tierpsy Tracker, and companion software, for multiwell imaging format  
In our camera array system, each camera records multiple wells which complicates metadata 
handling since there is no longer a one-to-one correspondence between a video file and a 
particular experimental condition. We have updated Tierpsy Tracker17 to handle videos with 
multiple wells: it can automatically identify wells from the video (Figure 1F), and return 
results on a well-by-well basis. In the Viewer, the user can see the names and boundaries of 
the wells, and have the option of marking any well as “bad” if necessary. This flag is 
propagated to the final tracking results so that the contribution of “bad” wells can be filtered 
out for downstream analysis.  
 
To keep track of the experimental conditions of each well we have developed an open-source 
module in Python to automatically handle experimental metadata 
(github.com/Tierpsy/tierpsy-tools-python). For each experiment, a series of csv files specifies 
the worms and compounds (if applicable) that were added to each well. This can include 
information on how a COPAS worm sorter (Union Biometrica) was used to dispense 
different strains in the wells of the imaging plates, which compound source plate was 
replicated onto each imaging plate, or any column shuffling performed by a liquid handling 
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robot. These tables are then combined to create a mapping between each well in an imaging 
plate (identified by a unique ID) and an experimental condition. For each imaging run, the 
user needs to log the camera array used for each imaging plate at the time of the experiment. 
This information is then mapped to video file names to create a final metadata table suitable 
for subsequent analysis (see Material and Methods and Supplementary Figure 3 for more 
details). 

 
Another key software improvement we incorporated is a convolutional neural network 
(CNN) to exclude non-worm objects from subsequent analysis. While we previously used 
contrast-based segmentation and size-based filtering for worm detection in our analysis17, 
introducing the CNN into Tierpsy Tracker improves the quality of the tracking data and the 
subsequent analysis results as well as the speed of the analysis because fewer objects are 
analysed in subsequent steps (see Materials and Methods for more details). 
 
Rapid assessment of natural variation in behaviour 
We tracked the behaviour of N2 and wild isolates of the divergent set in the C. elegans 
Natural Diversity Resource (CeNDR) strain collection with our system to detect natural 
variation in behaviour30. To further increase the dimensionality of the behavioral phenotypes, 
we included a blue light stimulation protocol using a set of four bright blue light LEDs. Each 
tracking experiment is divided into three parts: 1) a 5-minute pre-stimulus recording, 2) a 6-
minute stimulus recording with three 10-second blue light pulses starting at 60, 160, and 260 
seconds, and 3) a 5-minute post-stimulus recording. Blue light can elicit an escape response 
in worms, thus expanding the range of observable behaviours31,32. Programmable blue light 
stimulation is reproducible, compatible with high throughput assays, and is also useful for 
optogenetic stimulation. 
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Figure 2: Natural variation in behaviour. A-C) Examples of features describing morphology, movement, and 
posture. Stars indicate statistically significant differences between N2 and wild isolates at a false discovery rate 
of 1% using Kruskal-Wallis tests and correcting for multiple comparisons with the Benjamin-Yekutieli method. 
A) Morphological differences were detected between strains. The length and the midbody width varied in a non-
uniform way among strains. B) Adequate resolution enabled detailed characterisation of the worm posture and 
the detection of differences among strains in multiple dimensions. The curvature at different parts of the body 
varied in a non-uniform way among strains. The neck curvature showed more significant differences. The parts 
of the body are defined following the conventions adopted in Tierpsy Tracker33. C) The speed of wild isolates 
was on average higher than the speed of N2 worms. The response of wild isolates to blue light stimulus varied; 
some strains (e.g. EG4725) were more sensitive to blue light compared to N2, while others showed less obvious 
escape response (e.g. DL238). This provided additional dimensions to the behavioural phenotype. D) Using the 
quantitative behavioural phenotypes, strains were classified with significantly higher accuracy than random. 
Combining features from different blue light conditions increased the dimensionality of the data and the 
classification accuracy between strains. E) Worm strains were predicted in a held-out test set with 66% accuracy 
which is higher than random (9%). 
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We tracked on average 20 wells per strain. Given the high throughput achieved with our new 
system, this experiment can be performed within a few hours. The recordings of the camera 
array maintain enough resolution to extract the full set of Tierpsy features33, which describe 
in detail the morphology, movement, and posture of the worms, including subdivision by 
motion mode (forward, backward, and paused) and body part. We extract a set of 3076 
summary features per well for each recording period (pre-stimulus, blue light, and post-
stimulus), resulting in a total of 9228 features for each well. This allows us to detect fine 
differences in the morphology, posture and movement of the worms which varies in a non-
uniform way among wild isolates (Figure 2A-C). The neck curvature of wild isolates tends to 
show more significant differences to N2 worms than the curvature of other parts of the body, 
which might be related to differences in foraging behaviour between N2 and wild isolates 
(Figure 2B). However, not all strains show the same curvature pattern across the body 
indicating natural variation in posture. All the wild isolates move on average faster than N2 
worms but their response to blue light varies (with some being more and others less sensitive 
to blue light), showing that the blue light stimulus increases the dimensionality of behavioural 
differences (Figure 2C). 
 
To assess how well we can predict the worm strain based on its behavioural fingerprint, we 
estimated the classification accuracy using a random forest classifier. We first split the data 
into a training/tuning set and a held-out test set. We used the training set to select features 
using recursive feature elimination (RFE) and tune the hyperparameters of the model. Figure 
2D shows the highest cross-validation accuracy achieved for different sizes of selected 
feature sets. The accuracy improves when we select features increasing the samples-to-
features ratio, as this helps control overfitting and, in parallel, reduces the correlation between 
features. Combining features from different blue light conditions (blue curve) increases the 
dimensionality of the data and the classification accuracy. Using the best performing features 
and hyperparameters, we trained a classifier with the entire training/tuning set and used it to 
make predictions in the test set. The test accuracy we achieved is 66% which is significantly 
higher that random (9%). 
 
Temporal response and sensitisation to aversive blue light stimulation 
Having established that blue light stimulation can be leveraged to improve classification 
accuracy, we moved to further investigated the response elicited by blue light in N2 and 
CB4856 at a higher temporal resolution. 
 
We imaged with blue light stimulation on both the N2 and CB4856 strains, and observed 
different behavioural responses between these two strains. We extracted the same set of 3076 
previously defined features33 with a time resolution of 10 seconds and used these to construct 
the behaviour phenotype space. N2 and CB4856 have well known behavioural 
differences26,34–38 and are expected to occupy different regions of the phenotype space. 
Principal component analysis (PCA) shows that application of blue light stimulation moves 
the strains from their already distinct positions in the plane defined by the first two principal 
components (PCs) to new positions, indicating detectable responses to the stimulus in both 
strains (Figure 3A).  Blue light-induced displacement through phenotype space led to better 
separation between the two strains (Figure 3A, right), confirming that the addition of the 
stimulus can reveal further behavioural differences between two strains already known to be 
distinct.  
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Figure 3: Escape response to photostimulation. A) PCA plots of N2 and CB4856 in the 10 seconds 
immediately before (left) and immediately after (right) a 10 second stimulus showing detectable behavioural 
responses: both strains moved to new, better separated positions in the phenotype space as a result of 
stimulation. B) Photostimulation with blue light elicited similar escape responses in both N2 and CB4856 
strains, with the fraction of worms moving forwards increasing during the stimulus and decreasing after the 
stimulus. However, post-stimulus recovery appears to occur at two timescales for N2 but not for CB4856. Solid 
lines are means, shaded areas show the 95% confidence interval. C) Repeated photostimulation triggered 
increasing aversive response in N2, also leaving a higher fraction of worms stationary after serial stimulation 
than before (vertical separation between the two dashed lines to contrast the before and the after levels). D) The 
fraction of worms triggered to move forwards by each stimulus increased throughout the stimulation series, with 
the opposite trend for worms initiating movement after pausing. Each data point was obtained by taking the 
difference in a 10 second window just before and just after the end of each stimulus. E) After repeated 
photostimulation, a larger fraction of the population than before was stationary. This was quantified by taking 
the difference of the population fractions in each motion mode between the final 5 minutes and the initial 5 
minutes of the experiment (red dashed lines in C). 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 13, 2021. ; https://doi.org/10.1101/2021.04.16.440222doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.440222
http://creativecommons.org/licenses/by/4.0/


The C. elegans escape response is characterised by a combination of increased forward 
locomotion and decreased spontaneous reversals39. The differences in blue light-induced 
escape response between the N2 and CB4856 strains can thus also be seen by simply 
examining the fraction of the worm population moving forwards, moving backwards, or 
remaining stationary. For both strains, a single dose of photostimulation triggers a sharp and 
steady increase in the fraction of worms moving forwards, followed by a relaxation towards 
the pre-stimulus level once the stimulus ceases. The fraction of worms moving backwards has 
a slight increase at the beginning of the stimulus, and then decreases without increasing again 
until the stimulus is over. Finally, the fraction of stationary worms declines rapidly during the 
stimulus and is restored after the stimulus ends (Figure 3B). However, while in CB4856 the 
rate at which the population fractions return to the pre-stimulus levels is steady, N2 shows a 
sharp initial decline in forward-moving worms over several seconds (and a corresponding 
sharp increase in stationary worms and backward-moving worms) before relaxing steadily. 
Repeated photostimulation (twenty pulses of 10 s on, 90 s off) of N2 worms causes 
sensitisation, as light pulses trigger a progressively increasing fraction of worms to move 
forwards (Figure 3). Meanwhile, between light pulses, worms recover to a progressively 
decreasing baseline level of forward locomotion (and conversely, progressively increasing 
stationary fraction), possibly due to fatigue from increased activities during the pulse. This 
reduced forward locomotion fraction persists in the absence of photostimulation, with no 
obvious return towards pre-stimulus levels over a 6.5 minute period after the final pulse 
(Figure 3C, E). The combined effects of sensitisation and fatigue leads to a roughly linearly 
increasing response over multiple light pulses, as illustrated by taking the difference between 
the fraction of worms moving forward before and after stimulation (Figure 3D).  
 
Photostimulation can thus better distinguish between worm strains using existing pre-defined 
feature sets, as well as create new features for quantifying the details of the escape behaviour. 
Similar experiments on habituation to repeated mechanical stimulation have been used 
extensively to study learning in C. elegans40–42. Aversive blue light stimulation acts through 
different sensory neurons and converges on the same motor circuits and so may provide 
useful comparative data to investigate the genetics and neuroscience of learning mechanisms. 
The addition of these new and interpretable features increases the dimensionality of the worm 
behavioural phenotypic space, which may be useful for phenotyping applications.  
 
Behavioural phenotypes of ALS disease models in response to blue light 
A previous study generated several Amyotrophic Lateral Sclerosis (ALS) disease model 
strains that carry patient amino acid changes in the C. elegans sod-1 gene43. This study found 
that the disease model strains have no obvious behavioural defects unless they are exposed to 
oxidative stress by overnight treatment with paraquat.  
 
We phenotyped these ALS disease model strains on our system and saw similar results. PCA 
of a pre-defined set of 256 Tierpsy features33 under standard imaging conditions (five 
minutes of spontaneous behaviour) does not show clear differences between the strains 
(Figure 4A). Adding blue light pulses (three 10-second blue light pulses over six minutes) 
leads to better separation between the strains in PC space (Figure 4B). Although the SOD-
1(+) wild-type control strain (blue) and the SOD-1(A4V) mutant disease strain (orange) 
clearly separate into their own clusters, SOD-1(H71Y), SOD-1(G85R) and SOD-1(0) null 
strains cluster together, suggesting that their overall responses to blue light are similar to each 
other. The clustering of SOD-1(H71Y), SOD-1(G85R), and SOD-1(0) strains upon blue light 
stimulation is consistent with the previous finding that all three strains have loss of sod-1 
function in glutamatergic neurons. By contrast, the SOD-1(A4V) strain has overexpression of 
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sod-1 in cholinergic neurons without affecting glutamatergic neurons43, and this disease strain 
forms its own cluster in the blue light PC space (Figure 4B).  
 

 
Figure 4: Blue light stimulation elicits different responses amongst ALS disease models. A-B) Principal 
component analysis of 256 extracted behavioural features from standard (A) or blue light (B) imaging 
conditions. Features were extracted by Tierpsy Tracker. Each datapoint represents one plate average of the 
strain, with up to 12 independent wells for each strain in every 96-well plate. Each well contained an average of 
three worms. The time window represented in B is also shown in D. C) Changes in the overall fraction of 
forward (top) or paused (bottom) locomotion upon blue light stimulation. The difference was calculated by 
subtracting the average feature values over the t = 50-60 second pre-stimulus window from those over the t = 
65-75 second first blue light pulse window (these correspond to the first and the second time points in D, 
respectively). Plate averages were used to generate the plot for each strain. Two sample t-test compared to the 
SOD-1(+) control strain: ** p<0.01; *** p<0.001. D) Overall fraction of forward locomotion under blue-light 
imaging conditions. Three 10 second blue light pulses (blue shading) started at t = 60, 160, 260 seconds, and 
feature values were calculated using 10 second windows centred around 5 seconds before, 10 seconds after, and 
20 seconds after the beginning of each blue light pulse. Plate averages were used to generate the plot for each 
strain. Points are means of these plate averages and error bars show the standard deviation. 

 
Behaviourally, the previous study reported an increased escape response from noxious 
paraquat in the three sod-1 loss-of-function strains caused by increased neuromuscular 
junction function43. Our results using blue light as a noxious stimulus reproduce the paraquat-
induced differential escape responses. Upon blue light stimulation, SOD-1(H71Y), SOD-
1(G85R), and SOD-1(0) strains show significantly bigger increases in forward locomotion 
compared to the SOD-1(+) control strain and the SOD-1(A4V) disease strain (Figure 4C, 
top). This increase in forward movement appears to be primarily at the expense of stationary 
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(Figure 4C, bottom) rather than backwards locomotion (Supplementary Figure 2A). 
Nevertheless, a closer look at reversal frequencies at a finer temporal resolution reveals 
decreased reversals in the three sod-1 loss-of-function strains but not the other two strains 
(Supplementary Figure 2B). Finally, the level of blue light-induced escape response is 
sustained across three pulses of light stimulation for all five strains with no obvious 
habituation effect (Figure 4D and Supplementary Figure 2B).  
 
Phenotypic screen of human-approved drugs 
We used a library of 245 drugs that have previously been shown to accumulate in worms44 to 
quantify worms’ responses to human-approved drugs across multiple behavioural features. 
Three worms were added to each well of 96-well plates and were left on the drug for four 
hours before imaging. We extracted the Tierpsy256 features from each imaging condition 
(pre-stimulus, blue light stimulus, post-stimulus) and concatenated the feature vectors so that 
each well was represented by a 768-dimensional feature vector. We used a linear mixed 
model to identify compounds that had a significant effect on behaviour in at least one feature 
as previously described45. The linear mixed model used the imaging day as a random effect to 
account for day-to-day variation in the data. The 153 compounds that had a detectable effect 
were kept for further analysis. The features were then z-normalised and both features and 
samples were hierarchically clustered using complete linkage and correlation as the similarity 
measure (Figure 5A). 
 
The compounds in the library are mostly well-characterised with known modes of action. By 
examining clusters in detail, we found several clusters that included multiple compounds 
from the same mode of action (Figure 5B-D). One of the identified clusters contains several 
antipsychotic compounds (Figure 5B). Several antipsychotics have been shown to have 
direct effects on the C. elegans nervous system46–48,48. The most clearly defined cluster 
(Figure 5C) contains antibiotics. Because the worms were imaged on a lawn of bacterial 
food, the most likely cause of these behavioural differences is a change in the bacterial food 
lawn that worms sense and respond to, but a direct effect on the worms is not impossible 
since C. elegans do respond to some antibiotics49,50. A third cluster is enriched for histamine 
H1 receptor antagonists. Based on sequence similarity, there are no obvious orthologs of the 
human HRH1 receptor in C. elegans51 and so the similarity in behavioural effects between 
these compounds may be driven by off-target effects. For example, the antihistamine 
Epinastine has direct effects on C. elegans octopamine receptors52. 
 
Most of the compounds had a detectable effect on behaviour, but many of the effects were 
less obvious than a library of invertebrate-targeting compounds that we screened recently 
using the same method45. A part of the explanation is likely to be a lack of conservation of 
some drug targets between humans and worms, although it should be noted that many are 
sufficiently conserved that human-targeted drugs have effects through the expected receptor 
class53. Another reason some compounds do not have a detectable effect is drug uptake which 
is known to be an issue for drug screens in worms44, highlighting the continuing need for 
improved drug delivery to maximise the usefulness of worms in drug screening54. 
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Figure 5: Worms respond differently to drugs with different modes of action. A) Heatmap of behavioural 
fingerprints of worms in response to treatment with drugs. Each row is the average phenotype of worms across 
multiple wells treated with the same compound at the same dose. Each column is a single behavioural feature.  
The colour indicates the z-normalised feature value.  B-D) Some compounds from the same class cluster 
together according to their behavioural response including antipsychotics (B), antibiotics (C), and H1 receptor 
antagonists (D). 

Discussion 
We have developed a megapixel camera array system to enable high throughput, high content 
imaging of worms in standard multiwell plates. By partially overlapping the fields of view of 
six cameras, we can image an entire 96-well plate at spatial and temporal resolutions that are 
sufficient for tracking C. elegans and extracting high-dimensional phenotypic fingerprints. 
We have added features to Tierpsy Tracker to make it compatible with the multiwell imaging 
format, so that each well is detected and analysed separately. We incorporated strong blue 
LED lights into the camera array system to provide precise and repeatable photostimulation 
and found that this leads to better separation between wild isolates and ALS disease model 
strains, in the latter case revealing phenotypes that could not be detected in standard 
unstimulated assays. Repeated blue light stimulation also revealed a novel sensitisation 
phenotype in N2 worms, in marked contrast to our initial expectation of habituation, as 
reported in previous experiments on repeated mechanical stimuli which are used to study 
learning in worms12,41. 
 
Our imaging hardware and analysis software are designed to support high throughput 
phenotypic screening, as the multiwell format allows for a large number of experiments to be 
conducted simultaneously. Furthermore, our experimental pipeline uses liquid handling 
robots for dispensing agar, food, drugs, and worms, in order to streamline the workflow for 
large-scale phenotypic screening. On a typical eight-hour imaging day, a single experimenter 
can operate five runs on all five camera array units, thus collecting imaging data from 2400 
independent wells in a 96-well plate format. Typical post-acquisition processing time for this 
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volume of data (assuming the standard 16 minute video length at 25 fps, three worms per 
well) is 50-85 hours using a MacPro (Processor: 2.7 GHz 12-Core Intel Xeon E5; Memory: 
64GB 1866 MHz DDR3) to go from raw video data to fully extracted behavioural features. 
Processing time increases significantly with object number and depends on the quality of the 
video (good contrast, lack of debris, etc.). 
 
A main strength of our camera array system is its scalability. Screening throughput can be 
readily expanded with additional imaging units, as the system is modular and each camera 
array has a relatively small physical footprint. Motif software enables on-the-fly compression 
of raw videos during acquisition, thereby keeping data volume manageable. Post-acquisition 
analysis is easily parallelised since videos can be analysed independently and processing time 
can be decreased linearly by allocating more computational cores to the task (e.g. by using a 
high-performance cluster). 
 
The megapixel camera arrays we describe here represent a natural progression in worm 
tracking hardware where advances in the past have come from multiplexing to increase 
throughput13 and increasing resolution to get more information from multi-worm trackers12. 
Our new system will make it possible to do higher throughput screening with a resolution that 
enables the full suite of computational ethology tools to be brought to bear on phenotyping. 
We anticipate this will open new directions in large scale behaviour quantification with 
applications in genetics, disease modelling, and drug screening. 
 
 

Materials and Methods 
 
Worm strains 
C. elegans strains used in this work are listed in Supplementary Table 1. Worms are cultured 
on Nematode Growth Medium (NGM) agar at 20 ºC and fed with E. coli OP50 following 
standard procedures18. 
 
Standard phenotyping assay 
The standard phenotyping assay was used for most experiments in this work unless otherwise 
noted (detailed protocol: https://dx.doi.org/10.17504/protocols.io.bsicncaw). See 
Supplementary Table 2 for the detailed protocols used to collect the data shown in each 
figure panel.  
 
Briefly, Day 1 adult worms were obtained by bleach-synchronisation (detailed protocol: 
https://dx.doi.org/10.17504/protocols.io.2bzgap6) and used for all imaging experiments. 
Imaging plates were prepared by filling 96 well plates with 200 μL of low peptone (0.013% 
Difco Bacto) NGM agar per well using an Integra VIAFILL reagent dispenser (INTEGRA 
Biosciences Ltd, UK) (detailed protocol: http://dx.doi.org/10.17504/protocols.io.bmxbk7in), 
and stored at 4 ºC until use. On the day before imaging, plates were placed in a LEEC BC2 
drying cabinet (LEEC Ltd, Nottingham, UK) to lose 3-5% weight (2-3 hours). Each plate was 
then seeded with 5 μL per well of 1:10 diluted OP50 using VIAFILL, and stored at room 
temperature overnight.  
 
On imaging day, synchronised Day 1 adults were washed in M9 (detailed protocol: 
https://dx.doi.org/10.17504/protocols.io.bfqbjmsn) and dispensed into imaging plate wells 
using COPAS 500 Flow Pilot worm sorter (detailed protocol: 
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https://dx.doi.org/10.17504/protocols.io.bfc9jiz6). Three worms were placed into each well 
unless noted otherwise. Plates were returned to a 20 ºC incubator for 1 hour to dry following 
liquid handling, and then placed onto the multi-camera tracker for 0.5 hour to acclimatise 
prior to image acquisition. 
 
Drug experiments 
Drug experiments followed the standard phenotyping assay workflow, but with a few 
modifications. A detailed protocol can be found at 
http://dx.doi.org/10.17504/protocols.io.bs6znhf6. 
 
Briefly, imaging plates were prepared with drugs the day before imaging and stored in the 
dark overnight at 4 ºC. Using a COPAS 500 Flow Pilot, three worms were dispensed into 
each well of 96-well plates. Following liquid handling, plates were kept in a 20 ºC incubator 
for an extra three hours to allow drug exposure (total drug exposure time was thus four 
hours). 
 
Image acquisition 
All videos were acquired at 25 fps on the trackers in a temperature-controlled room at 20 ºC, 
with a shutter time of 25 ms, and 12.4 µm px-1 resolution. For all experiments unless 
otherwise noted, three sequential videos were taken, run in series by a script: a 5-minute pre-
stimulus video, a 6-minute blue light recording with 10-second 100% intensity blue light 
pulses at the 60, 160, and 260 seconds mark, and a 5-minute post-stimulus recording. The 
timing of recordings and photostimulation was controlled using Loopbio’s API for Motif 
software [https://github.com/loopbio/python-motifapi] in a script. 
 
For the serial blue light stimulation experiments, the plates were continuously imaged for 43 
minutes and 20 seconds in the following stimulation pattern: 5 minutes off, 20 x (10 s on, 90 
s off), 5 minutes off.  
 
Image processing and quality control 
Segmentation, tracking, and pose estimation over time was performed using Tierpsy Tracker. 
Each video was checked using Tierpsy Tracker’s Viewer, and wells with visible 
contamination, agar damage, or excess liquid (from worm sorter, so that worms swim rather 
than crawl) were marked as bad and excluded from the analysis. 
 
Convolutional neural network to exclude non-worm objects  
We improved Tierpsy tracking by incorporating a CNN classifier after segmentation to 
exclude non-worm objects from being analysed and skewing the results.  
 
In the video compression step at the beginning of the Tierpsy analysis pipeline, a 
segmentation algorithm detects putative worm objects according to a set of user-defined 
parameters. The pixels in the frame that are further away than a threshold from any of the 
putative worms are set to 0, creating a “Masked Video”. The objects selected by the masking 
algorithm are tracked throughout the video, but now if only they pass the filtering step 
powered by a CNN classifier. 
 
The classifier was trained on a dataset of 43,561 grey-scale “masked” images measuring 
80x80 pixels each, collected across several imaging systems in our lab. All images were 
manually annotated and objects were marked as either “worm” or “non-worm” by two 
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independent researchers, so a consensus could be sought. The annotated dataset was split into 
training, validation, and test sets containing 80%, 10%, and 10% of the images, respectively, 
while keeping the classes balanced in each set. All images were pre-processed in two steps. 
First, the background pixels set to 0 by the masking algorithm were shifted to the top 95 
percentile of the grey values in the unmasked area. This prevents the artificial edge between 
the masked and non-masked area from disproportionately influencing the classifier. Second, 
all pixel values were scaled to the range of 0 to 1 by min-max normalisation, to reduce the 
influence of variable illumination and contrast in different imaging setups. 
 
The architecture of the CNN is a shallower adaptation of VGG1655, featuring eight 
convolution layers with 3x3 filter size and stride 1, each followed by a rectified linear 
activation unit, four max-pool layers (filter size 2x2, stride 2) applied every two convolution 
layers, and a fully connected layer. Batch normalisation is applied to the third and seventh 
convolution layer to accelerate training by reducing internal covariate shift56, and a Dropout 
layer is added before the fully connected layer to prevent overfitting57. In total, the CNN has 
about 1.78 million trainable parameters. 
 
The CNN classifier was implemented in PyTorch 1.6, and was trained with the cross entropy 
loss function and the Adam optimisation algorithm58 at a learning rate of 10-4. It achieved an 
accuracy of 97.68% and F1 score of 97.98% as measured on the independent test set. 
 
To improve performance at the inference step, we apply the CNN to a subset (one image per 
second) of all the images featuring the same putative worm object. This yields, per snapshot, 
the probability of the object to be a valid worm. If the median of this probability over time is 
higher than 0.5, the object is classified as a valid worm. 
 
Video processing with multiple wells 
Using multiwell plates for imaging significantly increased the experimental throughput, but 
also introduced challenges for data analysis as each video output contains 16 separate wells. 
Further software engineering was thus warranted to process multiwell videos, so that wells 
are detected and analysed separately.  
 
To achieve this, we implemented an algorithm in Tierpsy Tracker that automatically detects 
multiple wells in a field of view and stores the coordinates of well boundaries. Briefly, we 
created a template that approximates the appearances of a well in the video, and replicated it 
on a lattice to simulate the grid of wells. The overall dimensions of the lattice are defined in 
Tierpsy’s configuration file, but the lattice spacing parameters were chosen, via SciPy’s 
differential evolution routine59, to minimise the differences between the video’s first frame 
(or its static background, if Tierpsy was instructed to calculate it) and the simulated grid of 
wells.  
 
Automatic extraction of behavioural features was then performed on a per-worm basis, before 
worms were sorted into their respective wells based on their (x, y) coordinates in order to 
obtain well-averaged behavioural features. 
 
Data provenance 
Tracking multiwell plates complicates the handling of metadata, since there isn’t a unique 
mapping between videos and experimental conditions. When well shuffling is performed 
using the liquid handling robot, the well contents in the imaging plate also needs to be 
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tracked. To handle experimental metadata for imaging with the camera arrays, the records 
that need to be compiled manually during the experiments was standardised and an open-
source module in Python (https://github.com/Tierpsy/tierpsy-tools-python/hydra) was 
developed to combine the experimental records to create a full metadata table with the 
experimental conditions for each well (Supplementary Figure 3). 
 
The experimental records are typically compiled in the form of csv files. In each tracking 
day, the experimenter needs to record: i) information about the media type and the bacterial 
food present on the imaging plates, and the worm strains that were dispensed into the wells of 
the plates (this is recorded in a summarized way in the wormsorter.csv file), ii) information 
about the experimental runs, including the unique IDs of the imaging plates, the instrument 
name where each plate was imaged, and the environmental conditions 
(manual_metadata.csv), iii) if applicable, information about the contents of the compound 
source plates (sourceplate.csv) and the mapping between imaging plates and source plates (if 
the liquid handling robot was used for column shuffling, this mapping will be recorded 
automatically in the robotlog.csv; if there was no shuffling, this will be recorded in 
imaging2source.csv).  
 
Using the functions in the hydra module, firstly a plate metadata table is created to contain all 
the well-specific experimental conditions for every well of each unique imaging plate, 
including the compound contents if applicable. Then, the information about the experimental 
runs is merged with the plate metadata to create a final metadata table with the complete 
experimental conditions for every recording of every well. At this stage, the video filenames 
are also matched to the sample based on the camera array instrument ID. For example scripts 
showing metadata handling, see https://github.com/Tierpsy/tierpsy-tools-
python/tree/master/examples/hydra_metadata. 
 
 
Analysis of time-resolved response to photostimulation 
Tierpsy Tracker17 was used to calculate a set of 3076 summary features for each well for each 
non-overlapping 10 s interval of the 6-minute stimulus recording (with three 10-second blue 
light pulses starting at 60, 160, and 260 seconds). Samples where more than 40% of the 
features failed to be calculated were excluded from the analysis, and so was any feature that 
failed to be calculated for more than 20% of the samples in any of the 10 s intervals. Missing 
values were then imputed by averaging the valid values within each time interval. The feature 
matrix (all wells, in all time intervals) was then scaled by applying z-normalisation. Principal 
Components were then calculated using the whole feature matrix. Figure 3A shows a density 
plot of the measurements collected in the 10s immediately before (left) and immediately after 
(right) a 10-second stimulus, projected onto the plane defined by the first two principal 
components. 
 
To investigate the response to photostimulation with higher temporal resolution, Tierpsy 
Tracker17 was used to detect the motion mode (forwards, backwards, stationary) of each 
worm over time. To calculate the fraction of worms in each motion mode over time (Figure 
3B), the number of worms in each motion mode at each time point in each well was divided 
by the total number of tracked worms at each time point in each well. This gave the fraction 
of worms in each motion mode, at each time point, for each well, so that an average could be 
taken across all wells. The 95% confidence interval for the average was obtained by 
nonparametric bootstrap (n = 1000 resamplings, with replacement). 
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For the longer experiments in Figure 3C-E, the motion mode detected by Tierpsy Tracker for 
each worm over time was first down-sampled to 0.5 Hz by dividing the video into non-
overlapping two seconds intervals and taking the prevalent motion mode in each interval. The 
fraction of the worm population in each motion mode over time was calculated by counting 
the number of worms in each motion mode and then dividing by the total number of worms 
detected at each time point. The 95% confidence interval was calculated via nonparametric 
bootstrap by the seaborn Python library. 
 
Classification of wild isolates 

For the classification of the divergent set we used a random forest classifier as implemented 
in scikit-learn60. For feature selection we used recursive feature elimination with a random 
forest estimator (RFE), as implemented in scikit-learn60. We started by splitting the data 
randomly in a training/tuning set and a test set, with 20% of the data from each strain 
assigned to the test set. We used the training/tuning set for feature selection. We tried specific 
candidate feature set sizes {2i, for i=7:11}. For each size, we performed cross-validation and: 
i) used each training fold to select N features and train a classifier with the selected features; 
ii) used each test fold to estimate the classification accuracy. We repeated the process 20 
times to get statistical estimates of the mean cross-validation accuracy for each size and 
selected the best performing size Nbest. We then selected Nbest features using the entire 
training/tuning set and used this set for downstream analysis. At a second stage, we tuned the 
hyperparameters of the random forest classifier using grid search with cross-validation as 
implemented in scikit-learn60 with the grid shown in Table 1. The best performing parameters 
are reported in Table 1. Finally, we trained a classifier on the entire training set using the 
selected features and hyperparameters and used it to make predictions on the test set. 
 
Table 1: Tested parameter grid for random forest classifier 

Parameter Values Selected 
n_estimators 200:200:2000 1000 
max_features ‘auto’, ‘sqrt’ ‘sqrt’ 
max_depth 10:10:110, None 50 
min_samples_split 2, 5, 10 2 
min_samples_leaf 1, 2, 4 2 
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Supplementary figures 
 

 
Supplementary Figure 1: Alternative plate designs investigated. A) Round wells are less optimal than square 
wells as a large part of the field of view is lost to the area between wells, thus reducing the effective area for 
behaviour. Round wells further lose more effective area due to the shadows cast by the separators. B) A 
prototype custom made 54 multiwell plate. Custom plates with shallow wells and thin separators are the best 
option to maximise effective imaging area, but this comes with increased manufacturing costs and undermines 
interoperability with established automated liquid handling instruments. 
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Supplementary Figure 2: Backward locomotion in ALS disease models. A) Changes in the overall fraction 
of backward locomotion upon blue light stimulation. The difference was calculated by subtracting the average 
feature values over the t = 50-60 second pre-stimulus window from those over the t = 65-75 second first blue 
light pulse window (these correspond to the first and the second time points in Fig.3D, respectively. Two sample 
t-test against SOD-1(+) control strain: ns not significant; * p<0.05. B) Reversal frequency per worm per second, 
calculated for each frame at 25 fps. A reversal was detected when a worm changes its motion state from forward 
or paused to backwards. A 10 second sliding window was used to calculate reversal frequency, then the data 
was smoothed over a 3 second window. A random sample of 20 independent experiments was used to generate 
the left and the right column plots for each strain. 
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Supplementary Figure 3: Flow chart of the full metadata compilation based on standardised experimental 
records when imaging with the Kastl - HighRes. As mentioned in the methods section “Data provenance”, 
experiments with multiwell plates pose challenges in terms of keeping track of data provenance. Our pipeline to 
handle the automatic creation of metadata can flexibly accommodate different experimental needs (objects 
marked with * and surrounded by dashed boxes are optional and only present in some experimental designs). 
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Supplementary tables 
 
Supplementary Table 1: List of strains in this study 
 

Strain 
name 

Alias Genotype Source  Study 

N2  Bristol wild-type reference strain Caenorhabiditis elegans 
Natural Diversity Resource 

Natural Variation, 
Sensitisation 

CB4856  Wild isolate Caenorhabiditis elegans 
Natural Diversity Resource 

Natural Variation 

CX11314  Wild isolate Caenorhabiditis elegans 
Natural Diversity Resource 

Natural Variation 

DL238  Wild isolate Caenorhabiditis elegans 
Natural Diversity Resource 

Natural Variation 

ED3017  Wild isolate Caenorhabiditis elegans 
Natural Diversity Resource 

Natural Variation 

EG4725  Wild isolate Caenorhabiditis elegans 
Natural Diversity Resource 

Natural Variation 

JT11398  Wild isolate Caenorhabiditis elegans 
Natural Diversity Resource 

Natural Variation 

JU258  Wild isolate Caenorhabiditis elegans 
Natural Diversity Resource 

Natural Variation 

JU775  Wild isolate Caenorhabiditis elegans 
Natural Diversity Resource 

Natural Variation 

LKC34  Wild isolate Caenorhabiditis elegans 
Natural Diversity Resource 

Natural Variation 

MY16  Wild isolate Caenorhabiditis elegans 
Natural Diversity Resource 

Natural Variation 

MY23  Wild isolate Caenorhabiditis elegans 
Natural Diversity Resource 

Natural Variation 

HA2427 SOD-1(+) sod-1(tm776) II; unc-119(ed3) III; 
rtSi001[sod-1p::sod-1(WT); Cbr-unc-
119(+)] IV 

Andersen Lab 
(Northwestern University) 

ALS  

HA2464 SOD-1(A4V) sod-1(tm776) II; unc-119(+) III; rtSi008 
[sod-1p::sod-1A4VM ::sod-1 3'UTR + Cbr-
unc-119(+)] IV 

Andersen Lab 
(Northwestern University) 

ALS 

HA2425 SOD-1(H71Y) sod-1(tm776) II; unc-119(+) III; rtSi007 
[sod-1p::sod-1H71YM ::sod-1 3'UTR + Cbr-
unc-119(+)] IV 

Andersen Lab 
(Northwestern University) 

ALS 

HA2426 SOD-1(G85R) sod-1(tm776) II; unc-119(+) III; rtSi006 
[sod-1p::sod-1G85RM ::sod-1 3'UTR + Cbr-
unc-119(+)] IV 

Andersen Lab 
(Northwestern University) 

ALS 

HA2622 SOD-1(0) sod-1(tm776) II; unc-119(+) III; rtSi026 
[Cbr-unc-119(+)] IV 

Andersen Lab 
(Northwestern University) 

ALS 

 
 
Supplementary Table 2: detailed protocols 
 

Figure panel Protocol Number of worms 
per well 

Acclimatisation time 
(hours) 

Figure 2 https://dx.doi.org/10.17504/protocols.io.bn5zmg76 3 4.5 
Figure 3A-B https://dx.doi.org/10.17504/protocols.io.9vqh65w 2 4.5 
Figure 3C - E https://dx.doi.org/10.17504/protocols.io.bsicncaw 3 1.5 
Figure 4,  
Supplementary 
Figure 2 

https://dx.doi.org/10.17504/protocols.io.bsicncaw 3 1.5 

Note: Acclimatisation time is defined here as time of imaging – (start time on COPAS worm sorting + end time 
on COPAS worm sorting) / 2. 
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