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ABSTRACT 

 

The genetic manipulability and short lifespan of C. elegans make it an important model 

for aging research. Widely applied methods for measurements of worm aging based on 

manual observation are labor intensive and low-throughput. Here, we describe the 

Worm Collective Activity Monitoring Platform (WormCamp), a system for assaying aging 
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in C. elegans by monitoring activity of populations of worms in standard 24-well 

plates. We show that metrics based on the rate of decline in collective activity can be 

used to estimate the average lifespan and locomotor healthspan in the population. 

Using the WormCamp, we assay a panel of highly divergent natural isolates of C. 

elegans and show that both lifespan and locomotor healthspan display substantial 

heritability. To facilitate analysis of large numbers of worms, we developed a robotic 

imaging system capable of simultaneous automated monitoring of activity, lifespan, and 

locomotor healthspan in up to 2,304 populations containing a total of ~90,000 animals. 

We applied the automated system to conduct a large-scale RNA interference screen for 

genes that affect lifespan and locomotor healthspan. The WormCamp system is 

complementary to other current automated methods for assessing C. elegans aging and 

is well suited for efficiently screening large numbers of conditions. 

 

 

INTRODUCTION 

 

Studies in the roundworm C. elegans have led to a number of important discoveries 

about the basic mechanisms of aging (Kenyon, 2010). A number of aging-associated 

pathways discovered or extensively studied in C. elegans, including insulin/insulin-like 

signaling, DAF-16/FOXO, TOR, and dietary restriction, have proven to be conserved in 

other animal models and possibly humans (Friedman and Johnson, 1988; Kenyon et al., 

1993; Fraser et al., 2000; Lee et al., 2003; Hansen et al., 2005; Olsen et al., 2006; Uno 

and Nishida, 2016; Mack et al., 2018).  
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Traditional assays of aging in C. elegans require direct visual observation of worms and 

manual manipulation with a wire pick to assess lifespan (Lee et al., 2003). Manual 

lifespan assays are low-throughput and lack potentially important information about 

behavior and/or health during aging. These limitations of manual assays create barriers 

for large-scale efforts to discover novel genetic, pharmacological, or environmental 

interventions to slow or mitigate the effects of aging. 

 

To address these limitations, automated methods have been described for automatically 

assessing C. elegans aging. These methods include image analysis of worms cultured 

as individuals on separate substrates, as a population on a standard agar plate, or in 

microfluidic devices that may be used to observe worms individually or in populations 

(Stroustrup et al., 2013; Xian et al., 2013; Zhang et al., 2016; Churgin et al., 2017; 

Pittman et al., 2017; Saberi-Bosari et al., 2018; Pitt et al., 2019; Rahman et al., 2020).  

 

Our laboratory previously developed a microfabricated multi-well device called the 

WorMotel in which worms are observed in arrays of up to 240 wells, each holding one 

animal (Churgin et al., 2017). Data from the WorMotel was used to analyze the 

trajectories of behavioral decline during aging in wild-type and mutant strains (Churgin 

et al., 2017). Although the WorMotel method excels at providing detailed longitudinal 

information, it is difficult to scale to tens of thousands of animals due to the need to 

manually fabricate the substrates and prepare individual worms and wells. As a result, it 

is not ideally suited for large-scale genetic and/or pharmacological screens. 
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To address these limitations, we describe an experimental method for assaying C. 

elegans aging by monitoring populations of worms on standard 24-well microplates 

(Figure 1, Supplemental Figure 1.1, Video 1). We define metrics that, based on the 

collective behavioral activity from each well, can be used to predict the mean lifespan 

and locomotor healthspan (the time during which the locomotor activity of an individual 

exceeds a certain threshold) of each population. We then developed an improved 

automated imaging system capable of serially monitoring many plates at a time. We 

show that this assay, the Worm Collective Activity Monitoring Platform (WormCamp), 

enables recordings of up to 2,304 populations simultaneously and therefore facilitates 

measurements and screens for C. elegans lifespan and locomotor healthspan. 

 

 

RESULTS 

 

Aging phenotypes can be inferred from collective activity  

In the previously described WorMotel (Churgin et al., 2017), each well contains a single 

animal, allowing longitudinal analysis of behavior and lifespan. By contrast, we measure 

the collective activity of the population in each well in the WormCamp. At any time, the 

collective activity is equal to the number of surviving animals multiplied by the average 

individual activity. We asked how the collective activity from worm populations in the 

WormCamp might be used to assess metrics of aging, including lifespan and locomotor 

healthspan. 
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To understand the relationship between collective activity and lifespan or locomotor 

healthspan, we first simulated collective activity by summing individual worm activity 

data previously acquired using the WorMotel (Churgin et al., 2017). We used data from 

8 independently prepared 240-well plates containing a variety of conditions, including 

wild type animals, long lived mutants such as daf-2 (Kenyon et al., 1993), age-1 

(Friedman and Johnson, 1988), and tax-4 (Apfeld and Kenyon, 1999), and short lived 

mutants such as daf-16 (Figure 2).  

 

We summed up to 30 individual worm activity measurements to obtain the stimulated 

collective activity A(t) of the population for each recording session, analogous to that 

measured from a population of worms cultured together, as in a WormCamp (Figure 1B, 

C). We then calculated the normalized cumulative activity (NCA) for each population 

over time, defined as 

 

NCA(𝑡) =
∑ 𝐴(𝑡!)"
"!#$

∑ 𝐴(𝑡!)
""#$
"!#$

 

 

where the ti are the time points at which activity was measured and tmax is the time of 

the final measurement, which exceeds the maximum lifespan in the population. Note 

that NCA(0) = 0 and NCA(tmax) = 1, i.e., the cumulative activity monotonically rises from 

0 to 1. Next, we defined a metric Tx = NCA -1 (x) where NCA-1 is the inverse function of 
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NCA and x is a threshold between 0 and 1. The metric Tx corresponds to the time at 

which the normalized cumulative activity equals x (Figure 1F).  

 

We asked whether the metric Tx can be used to approximate true lifespan of a 

population. We calculated the correlation and root mean square error (RMSE) between 

Tx and true mean lifespan for a range of values of x from 0 to 1. We found that x=0.99 

gave the maximum best linear fit correlation coefficient (r = 0.96) and x = 0.97 gave the 

minimum RMSE (Supplemental Figure 2.2B, D). These results show that our T0.99 

metric based on collective activity is a good estimator of lifespan. 

 

Next, we asked whether the metric can also be used to estimate locomotor healthspan. 

Although healthspan in general lacks a consensus definition (Kaeberlein, 2018), one 

way to quantify locomotory health of individual worms is to determine the total time that 

an animal’s activity exceeds a threshold. This healthspan definition has also been 

referred to as the total days healthy (TDH) (Jushaj et al., 2020). In this work, we define 

the locomotor healthspan of an individual worm as the time during which the animal’s 

activity exceeded one-third of its 90th percentile activity level (Supplemental Figure 

2.1). Conceptually, this value represents the time during which the worm was at least 

moderately active.  

 

As we did for lifespan, we chose x to minimize RMSE between Tx and mean locomotor 

healthspan, resulting in a value of x = 0.82. The correlation coefficient between the two 
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variables was also near its maximum value of about r = 0.88 near x = 0.82. We 

therefore selected T0.82 as our healthspan estimator (Supplemental Figure 2.2A, C). 

 

Having validated the concept of collective activity based on simulated data, we next 

performed experiments with actual C. elegans populations in single wells of 24-well 

plates. We plotted the mean activity value for each well before and after the blue light 

stimulus (used to evoke activity) for each imaging period. As expected, collective activity 

decreased during aging (Figures 1C, D; 3A, B).  

 

We sought to verify that the WormCamp provides expected results for well known aging 

mutants. We performed 24-well plate experiments with wild-type animals, short-lived 

daf-16 mutants, and long-lived tax-4 and daf-2 mutants. We found that we could 

robustly detect differences in mean population lifespan and locomotor healthspan 

between these strains. Lifespan and locomotor healthspan inferred from collective 

activity measurements were in good agreement with that from simulating population 

data from individual worm data (Figure 2A-B, 3B-C).  

 

These results demonstrate that a metric defined by the normalized cumulative activity 

can be used to accurately infer average lifespan and locomotor healthspan in 

populations. 

 

 

A robotic imaging system enables high-throughput screening using the WormCamp 
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To increase experimental throughput, we sought to develop a method for imaging many 

plates concurrently. Various robotic imaging systems are potentially suitable for this 

task, including plate handling robots that move plates to a stationary imaging system 

(Churgin et al., 2017), and those that use motorized stages to move a camera to image 

stationary plates (Alisch et al., 2018; Pitt et al., 2019). We selected the moving-camera 

approach to reduce the rate of mechanical faults we had previously experienced with 

plate-handling robots.  

 

Our system, which we call WormWatcher, is a customizable integrated hardware and 

software solution for monitoring experiments concurrently. We constructed two systems 

containing 3-dimensional motorized stages and platforms, one with a capacity of 77 

plates and another with a capacity of 96 plates. Mounted to each stage is an assembly 

containing a camera, three high-powered blue stimulation LEDs mounted to a heat sink, 

and an internally mirrored acrylic box which promotes uniformity of blue light illumination 

on the plate. Red LED strips are mounted to the base of the mirror box to provide dark 

field illumination (Figure 4). Although this illumination method creates some spatial 

nonuniformity in dark field illumination across the plate (Appendix I – Figure 2A-C), we 

found that a well’s mean gray intensity had negligible influence on either the lifespan or 

healthspan estimators (r2 ≈ 0.02 for either; Appendix I – Figure 2D-F). As part of a 

study of the genetic basis of aging (Luyten et al., 2016), we used the robotic imaging 

systems and the WormCamp method to screen the clones in the Ahringer RNAi library 
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(Source Bioscience)(Kamath et al., 2003) for their effects on lifespan and locomotor 

healthspan (Appendix I).  

 

 

WormCamp measurements measure heritability of lifespan and locomotor healthspan in 

C. elegans wild isolates 

 

As part of a study of natural variation in aging, we applied the WormCamp method and 

our WormWatcher robots to assay lifespan and locomotor healthspan in a 

representative panel of 12 wild C. elegans strains. These 12 strains are highly diverged 

from one another and from the laboratory reference strain, together capturing 74.4% of 

the total known variation in C. elegans (Cook et al., 2017; Lee et al., 2021).  

  

We assayed 253 populations containing a total of approximately 7,500 animals. We 

estimated that the broad-sense heritabilities of lifespan and locomotor healthspan are 

0.17 and 0.31, respectively (Figure 5A, B).  

 

Previous reports have described large variability in lifespan measurements between 

different laboratories and between different assay techniques (Lucanic et al., 2017). We 

asked how WormCamp measurements of the 12 wild strains compare with those 

acquired by another method. To that end, we performed experiments on the same 12 

strains using the Lifespan Machine, an automated population-based assay of lifespan 

using flatbed scanners (Stroustrup et al., 2013) (Figure 5). We found a high degree of 
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correlation (Spearman correlation coefficient 0.78) between the measurements acquired 

in two different labs despite using vastly different experimental assays. These results 

increase confidence that the differences in aging we observe in wild isolates are robust 

and reproducible between laboratories. 

 

 

 

Optimization of well preparation and automated assessment of experiment quality 

 

Our large-scale screen presented the challenge of ensuring high data quality from 

thousands of experiments containing tens of thousands of images. Manual inspection of 

portions of the data indicated that the most common data aberration was the tendency 

of some of the worms to “escape”, i.e., disappear from the visible portion of the well, 

within approximately the first week (Appendix I - Table 1). Worms were later found 

desiccated on the vertical walls of the wells. Other problems that affected smaller 

portions of the dataset were bacterial or fungal contamination and the presence of 

progeny due to failure of floxuridine to sterilize the animals. 

 

Because disappearance substantially affected the overall quality of this dataset, we 

developed an automated method for estimating the number of worms in each well so 

that we could exclude them from further analysis.  
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First, we attempted to develop a simple method based on gray level or adaptive 

thresholding that could reliably differentiate worms from background. However, these 

efforts were unsuccessful, primarily due to variations in the texture of the bacteria lawn 

and lighting intensity and uniformity across each plate.  

 

Recent studies have shown that machine learning and convolutional neural network 

(CNN) based approaches can reliably identify worms in variable quality images (Hakim 

et al., 2018; Bornhorst et al., 2019; Bates et al., 2021). We trained a CNN to 

differentiate worms from background in 20x20 pixel kernels extracted from our images 

(see above). The 20x20 classification kernel is scanned across an image of a well in 

about 0.1s, determining whether each location tested is more likely to be worm or 

background (Figure 6A-C) and reports the worm fraction (WF), the fraction of tested 

locations deemed likely to contain worms. This WF is highly correlated with the number 

of worms counted manually in an image (Figure 6D). 

 

Application of the CNN to our entire dataset revealed that WF generally decreases over 

time (Appendix I – Figure 4A-C). We expected a decrease over each 30-day 

experiment because many worms appeared to disintegrate after death, precluding their 

detection by the CNN (Video 1). Nonetheless, large decreases in worm count over the 

first 10 days of imaging were unexpected and a common problem, with most wells 

experiencing a decrease by day 10, and some wells experiencing a loss of most of the 

worms (Appendix I – Figure 4B).  
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We next sought to determine the cause of worms escaping. We found that the 

percentage of worms remaining at day 10 was not meaningfully correlated with the 

worm density (initial WF) or with the lighting intensity of the well (Appendix I – Figure 

4D-E). We next asked whether wells prepared with the bacteria lawn touching the edge 

of the well were associated with increased escaping, as has been observed on standard 

NGM plates (Stiernagle, 2006). To address this question, we prepared WormCamp 

plates in which some wells contained a strictly centered lawn (Figure 7A), some wells 

contained a lawn that was centered but touching the edge (Figure 7B), and some wells 

contained a lawn that was off center and substantially touching the edge (Figure 7C). 

Populations in the latter two well types experienced significantly more escaping than 

populations placed on strictly centered lawns (Figure 7D-E). These results show that 

ensuring that the bacteria lawn does not touch the edge of a well is important for 

reducing escaping and producing accurate activity measurements. 

 

 

 

Discussion 

 

Our WormCamp method is an efficient way to conduct high-throughput measurements 

of C. elegans aging. Our technique consists of (1) an experimental procedure based on 

standard 24-well plates for measuring aging parameters in C. elegans populations and 

(2) an automated imaging system for serially monitoring plates containing thousands of 

populations. By validating aging metrics using ground truth data from individual worm 
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aging trajectories acquired using the WorMotel and matching those results to actual 

data from worm populations grown in 24-well plates, we show that key aging 

parameters can be extracted from collective population activity data. We have also 

shown that our automated imaging system can be used to assay natural variation in 

aging among wild isolate strains, and to screen for genes with effects on lifespan and 

healthspan.  

 

The WormCamp method has several important advantages compared to the WorMotel 

method (Churgin et al 2017). First, compared to a 240-well WorMotel, the WormCamp 

has a several times larger number of worms per plate (960 worms if N=40 per well), and 

can therefore test more conditions at a given population size per comparison. Another 

advantage is that no PDMS device fabrication or plasma cleaning are necessary for the 

WormCamp because commercial multiwell plates are used. Agar, food bacteria, and 

worm loading procedures are also simpler due to the smaller number of wells. Finally, 

less manual editing is required for data analysis.  

 

The WormCamp method also has disadvantages compared to the WorMotel. Since 

worms are not monitored individually in the WormCamp, there is no longitudinal tracking 

of behavior and no direct measurements of activity, lifespan, or healthspan. Although 

we have defined accurate estimates for lifespan and healthspan based on a wide 

variety of mutant strains, we cannot rule out the possibility that there exist strains in 

which the relationship between cumulative activity and lifespan or healthspan as 

described here do not hold.  
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Given these relative strengths and weaknesses, the WormCamp and WorMotel are best 

viewed as complementary methods. The WorMotel is well suited for acquiring high-

resolution longitudinal data for aging and behavior, including more accurate measures 

of lifespan and healthspan, and the WormCamp is well suited for efficiently screening a 

large number of strains or conditions. 

 

A number of other methods for automated assays of aging have been described. These 

include microfluidic devices (Xian et al., 2013; Saberi-Bosari et al., 2018; Rahman et al., 

2020), in which worms are imaged in a liquid environment. Among the advantages of 

these methods are that worms can be imaged at high resolution and without the 

presence of the chemical sterilization. However, microfluidics expose worms to an 

atypical environment and depend on specialized fluid handling equipment that can be 

difficult to scale to the levels we have achieved using the WormCamp.   

 

Methods for automated aging studies of worms on solid substrates include the scanner-

based Lifespan Machine (Stroustrup et al., 2013) and the WormBot (Pitt et al., 2019). 

These methods both assay lifespan by tracking individual worms in periodically acquired 

images. The Lifespan Machine acquires images using modified flatbed scanners, but 

the WormBot moves a camera to each of a number of six-well plates using a three-

dimensional stage similar to our robotic imaging system. These methods are most 

accurate when worms are spaced out in larger plates, and when worms are near death 

and move very little between imaging sessions. Compared to these methods, the 
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WormCamp has the advantage of increased throughput due to the confinement of worm 

populations in relatively small wells, and the disadvantage of not providing direct 

measures of individual worm fates as discussed above.  

 

We used the WormCamp to assess aging phenotypes of 12 representative wild isolates 

of C. elegans. We found that mean lifespan and locomotor healthspan traits have a 

broad-sense heritability of 0.32-0.34 (Fig. 7), a value greater than estimates of 

heritability of lifespan in humans (Herskind et al., 1996). Future work will use the 

automated robotic system to extend our measurements to hundreds of wild strains to 

identify new genetic loci that modulate aging across natural populations. 

 

We used the WormCamp to perform a large-scale screen for RNAi knockdowns 

affecting aging. Previous RNAi screens for lifespan genes have been reported (Lee et 

al., 2003; Hamilton et al., 2005; Hansen et al., 2005). However, the manual lifespan 

assays used to conduct these screens are limited by manual labor and unable to 

identify genes influencing differences in health during aging. Our method is capable of 

identifying new modulators of aging and distinguishing effects on lifespan from those on 

healthspan. The ability to efficiently measure both lifespan and healthspan will enable 

additional genetic and pharmacological analyses of aging.  

 

  

METHODS 

Strains 
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The following strains were used in this study: N2, CF1038: daf-16(mu86) I, CB1370: 

daf-2(e1370) III, TJ1052: age-1(hx546) II, PR678: tax-4(p678) III, DA509: unc-31(e928) 

IV, KG1180: lite-1(ce314) X, RB754: aak-2(ok524) X, CX32: odr-10(ky32) X, Wild 

isolates: CX11314, MY16, LKC34, JU775, DL238, ED3017, JU258, MY23, JT11398, 

EG4725, CB4856. All strains were maintained at 15-20°C using standard methods 

(Sulston 1983). All experiments were carried out at approximately 20°C unless 

otherwise stated.  

 

Experiments with the WorMotel platform were performed as described (Churgin et al., 

2017). Experiments on the Lifespan Machine were performed according to published 

protocols (Stroustrup et al., 2013; Mark et al., 2021).  

 

Preparation of 24-well plates  

Media for 24-well WormCamp plates is prepared identically to standard NGM plates 

(Stiernagle 2006) with agar replaced by 25 g/L gellan gum (Gelrite, Sigma Aldrich), 

which creates a gel with greater optical transparency than agar does. We included 200 

μM 5-fluoro-2’-deoxyuridine (floxuridine, Sigma Aldrich) in the media to prevent growth 

of progeny. For non-RNAi WormCamp experiments, 200 ng/mL streptomycin was 

added to the media. For RNAi WormCamp experiments, 1 mM IPTG and 200 μg/mL 

carbenicillin were included in the media. 1 mL of media was added to each well using a 

25 mL electronic pipette. To provide hydration, the region between the microplate wells 

was filled with approximately 30 mL of a solution of 20 g/L gellan gum and 3 g/L NaCl. 
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After media solidified, 50 μL of a DA837 or HT115 overnight bacteria suspension was 

added to each well for non-RNAi and RNAi experiments, respectively.  

 

Worms were synchronized by hypochlorite bleaching and added to each well 

approximately 40 hours after plating (Stiernagle 2006). L4-stage worms were 

suspended in NGM and approximately 30 worms were added to each well using a 

P1000 manual pipette. Although some wells may contain more or less than 30 worms, 

we verified that the initial worm count was not correlated with aging outcomes 

(Appendix I – Figure 4D). After allowing excess liquid to dry, we sealed plates using 

Parafilm laboratory film. 

 

 

Static Rig Image Acquisition 

 

For static (non-robotic) systems, images were captured with an Imaging Source DMK 

72AUC02 camera (2592 × 1944 pixels) equipped with a lens (Fujinon HF25SA-1, 2/3" 

25mm focal length, f/1.4 C-Mount, Fujifilm Corp., Japan). We used Phenocapture 

imaging software or MATLAB (MathWorks) to acquire time lapse images through a USB 

connection. Static imaging rig experiments were carried out under dark-field illumination 

using four 4.7" red LED strips (Oznium, Pagosa Springs, CO) positioned approximately 

2" below the plate (Churgin et al. 2017; Churgin and Fang-Yen 2015). For static imaging 

experiments, plates were imaged at a rate of 0.2 Hz for 30-minute imaging periods 

initiated every 12 h, and a 10 s blue light stimulus occurred at approximately 15 min.  
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Blue LED Stimulation 

Blue light stimulation was carried out as previously described (Churgin et al. 2017). 

Briefly, two or three high-power blue LEDs (Luminus Phlatlight PT-121, Sunnyvale, CA) 

were mounted to an aluminum heat sink for static or automated serial monitoring 

experiments, respectively. Blue LEDs were secured atop a mirrored acrylic box which 

served to generate uniform illumination to the plate. A solid-state relay (6325AXXMDS-

DC3, Schneider Electric, France) controlled by MATLAB through a NIDaq USB-6001 I/O 

device (National Instruments, Austin, TX) was used to drive the LEDs at a current of 18 

A using a DC power supply (29950 PS, MPJA Inc.). 

 

Image Processing 

Images were processed in MATLAB in a manner similar to that previously described 

(Churgin et al. 2017). Briefly, images acquired 60 seconds apart were subtracted. For 

each region of interest (well), pixels for which the gray-scale intensity value either 

increased or decreased by more than 15% were counted separately. We expect worm 

movements to create both increased and decreased pixels (Figure 1C), whereas 

artifacts such as a temporary increase or decrease in lighting intensity create only one 

type of changed pixel. Therefore, we used the lesser of the sums of increased and 

decreased pixels as the activity between two pixels. The activity of the well for a frame 

was defined as the number of pixels changed within each well.  
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Each imaging period consisted of a set of frames acquired before or after blue light 

stimulation (Figure 1D). For each imaging period, the spontaneous and stimulated 

activity for each well was defined as the average activity value over all frames in that 

imaging period before or after blue light stimulation, respectively.  

 

Robotic Imaging System and software 

The robotic plate imaging system is based on a commercially available computer 

numerical control (CNC) kit (SMW3D OX CNC). Briefly, the CNC kit was assembled 

according to the manufacturer’s instructions but with a custom imaging and illumination 

assembly attached to the stage in place of the spindle. Microcontroller-driven stepper 

motors move the carriage to visit each plate location twice per day. An array of laser-cut 

slots in an acrylic base plate define the locations of each plate. The software is 

optimized for the 24-well plate assay described above, but the robot is also compatible 

with any 128 mm x 86 mm plate, such 96-well plates, 384-well plates, or 240-well 

WorMotels (Churgin et al., 2017). The first robot has a footprint of 1.5 m x 1.25 m and 

can image an array of 11 x 7 = 77 plates containing 1848 populations. The second robot 

has a footprint of 1.2 m x 2.4 m and can image an array of 8 x 12 = 96 plates or 2304 

populations. The 3D stage is customizable, and smaller or larger designs are possible. 

Users interact with the robot via software written in C++ and Python which integrates 

robot movements, image acquisition, blue light stimulation, plate maintenance, error 

checking, and data processing.  
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The custom imaging assembly consists of a camera and lens (see Image Acquisition), 

blue LED and heat sink (see Blue LED Stimulation), and acrylic mirror box (see Blue 

LED Stimulation) mounted to 24”-long 20-mm aluminum extrusion (Figure 4). A single 

3’ red LED strip (Oznium, Pagosa Springs, CO) was mounted to the inner side of the 

bottom of the mirror box. The aluminum extrusion frame was mounted to the z-axis of 

the CNC machine. 

 

For automated serial monitoring experiments, each plate was imaged approximately 

every 12 h for 5 min. During acquisition, frames were recorded every 5 s and a 5 s blue 

light stimulus was applied approximately 2.5 min from the start of acquisition. Images 

were saved and processed by a 64-bit computer with a 3.40 GHz Intel Core i7 

processor and 8 GB of RAM running Windows 10. Images were analyzed using custom-

written C++ and Python software. 

 

Worm identification CNN Training 

A convolutional neural network (CNN) was developed to identify worms in dark field 

images. The network was designed and trained using PyTorch (Paszke et al., 2019) 

and accepts a 20x20 grayscale image as input. The structure consists of three 

convolutional layers, made up of 6, 16, and 32 filter kernels, followed by three linear 

layers comprised of 200, 84, and 2 nodes. Annotated data for training and testing was 

generated by first drawing boxes around worms in 474 images of individual WormCamp 

wells taken from experiment days 4, 10, or 20 containing 0 – 80 worms each. Additional 
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annotated data was prepared using 50 images of WorMotels (Churgin et al, 2017) 

containing 50-240 worms each (one per well), taken from experiment days 3 or 20.  

 

To generate training and testing datasets, annotated images were first downsampled to 

2/3 of its original resolution (such that the length of a worm is approximately 20 pixels) 

and then 20x20 images from random locations within each annotated image were 

exported. Each 20x20 image was assigned to the worm category if the center of any 

worm annotation lay within the middle 14x14 pixels of the 20x20 image, or the 

background category otherwise. In total, 67,000 worm training images, 67,000 

background training images, 16,000 worm test images and 16,000 background test 

images were generated. Test images came from different WormCamp plates or 

WorMotels than training data and were never used for training. 

 

The resulting CNN was converted to Open Neural Network Exchange (ONNX) format 

and is used by the deep neural network (DNN) module of OpenCV in out C++ analysis 

code to find worms. The final test accuracy of the CNN was 0.94 (sensitivity = 0.96, 

specificity = 0.92, PPV = 0.93, NPV = 0.96). To decrease the prevalence of false 

negatives, an additional confidence threshold of 1.6 was applied to the CNN worm 

node’s output, resulting in an accuracy of 0.90 (sensitivity = 0.83, specificity = 0.97, PPV 

= 0.97, NPV = 0.85). To locate worms within a larger image, the CNN is applied to 

20x20 pixel subsets of the image, classifying each as worm or background in this 

manner. 
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Wild strain experiments 

A total of 16 WormCamp plates were prepared with wild strains. Each WormCamp 

contained two wells of each of 11 wild strains and two wells of N2 worms. The position 

of each strain within each plate was varied between plates. WormCamps were then 

placed on the WormWatcher robots for at least 25 days and analyzed as described in 

the text. Application of automated quality filters removed 33% of the 386 populations 

studied, chiefly for reasons of escaping (17% of all populations) or insufficient initial 

activity (7% of all populations). See Appendix I for more information on automated 

quality filters. 
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FIGURES 

 

Figure 1: A 24-Well plate-based method for measuring C. elegans population 

lifespan and healthspan 

(A) A population of approximately 30 worms in a single well from a 24-well plate.  

(B) The same well 60 s later. 

(C) The difference image between the two frames. Gray represents pixels with no 

change; black represents pixels that decreased in intensity and white represents pixels 

that increased in intensity. Pixels that increased or decreased in intensity by more than 

15% were summed separately, and the activity between two frames was defined as the 
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lesser of the two sums. 

(D) Quantification of activity of 24 worm populations during a 5 min recording in which 

images were recorded every 5 seconds (similar to Churgin et al, 2017). Image pairs 1 

min apart were analyzed as in (A-C). A blue LED stimulation occurred at t = 155 s; 

activity before this time is referred to as unstimulated, activity after this time is 

stimulated. Data is censored between t = 90 s and t = 155 s as the difference image 

would be computed from one stimulated and one unstimulated frame, and between t = 

245 s and t = 300 s because no paired image exists to subtract.  

(E) Activity curves for a full 30 day experiment for one population. The stimulated and 

unstimulated activity at any timepoint in an activity curve is the mean of the 

corresponding activity that occurred during the 5-minute session. 

(F) Normalized cumulative activity corresponding to the stimulated activity in (E). Times 

to reach NCA = 0.82 and NCA = 0.99 are defined as the healthspan and lifespan 

estimates, respectively.  
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Supplemental Figure 1.1:  

(A) Raw image of a 24-well WormCamp plate.  

(B) Six wells, with worms visible in all wells. See also Video 1.  

 

  

Supplemental Figure 1.1: Raw image of one WormCamp plate

A

B
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Figure 2: Simulations of collective activity curves from individual worm activity 

(A) Correlation between the optimized lifespan estimator (T0.99) and true mean lifespan 

of a simulated populations of 30 worms in WorMotels (Churgin et al, 2017). Each 

population contains worms of one genotype. (B) Correlation between the optimized 

healthspan estimator (T0.82) and the true mean healthspan.  
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Supplemental Figure 2.1: A definition of locomotor healthspan 

Definition of healthspan for individual worms cultured individually in the WorMotel. Each 

point along an individual worm’s activity curve is the maximum stimulated activity 

recorded during the corresponding imaging session (Churgin et al., 2017). Healthy 

sessions (activity greater than 25% of the 90th percentile of the activity curve) are 

marked with green dots. The upper dotted line indicates the 90th percentile of activity, 

and the lower dotted line indicates the threshold for deeming a session healthy. In this 

example, the animal was deemed healthy on 23 sessions (healthspan = 11.5 days) and 

never observed to move after session 27 (arrow, lifespan = 13.5 days).  
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Supplemental Figure 2.1: Definitions of healthspan and lifespan in individual 
worms
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Supplemental Figure 2.2: Optimization of parameters for estimation of mean 

lifespan and healthspan from simulated collective activity. 

(A) Correlation between Tx, the time taken for the normalized cumulative activity of the 

simulated population to reach the xth fraction of the total, and the actual mean 

healthspan. (B) Correlation between Tx and the actual mean lifespan. Maximum: x = 

0.99, correlation = 0.91. (C) Root mean squared error between Tx and the actual 

median healthspan. Minimum: x = 0.82, RMSE = 1.6 days. (D) Root mean squared error 

between Tx and the actual mean lifespan. Minimum: x = 0.97, RMSE = 2.7 days. 

  

Supplemental Figure 2.2: Optimization of parameters 
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Figure 3: WormCamp assessment of mutants with known aging phenotypes 

Mean activity (A) and normalized cumulative activity curves (B) for each of the four 

genotypes tested. Healthspan estimates (T0.82) and lifespan estimates (T0.99) for all wells 

prepared are shown in C and D, respectively. * p < 0.05, ** p < 0.01, *** p<0.001 vs N2, 

one-way ANOVA followed by Bonferroni-corrected post-hoc comparisons. Black bars 

are the group mean, white boxes indicate group SEM. 12 wells (populations) were 

prepared for each condition; two plates with a total of 48 wells were prepared in total.  

Figure 3: WormCamp assessment of mutants with known lifespan differences
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Figure 4: Robotic imaging systems 

Image of a WormWatcher robot representative of the two robots used in our screen. 

Components of the imaging apparatus are labeled. 

 

Figure 4: Robotic imaging system
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Figure 5: Comparison of WormCamp and Lifespan Machine assessments of wild 

isolate lifespan. (A) lifespan (T0.99) and (B) healthspan estimates (T0.82) for 12 wild 

isolates. (A, B) Points represent individual well trait estimates and are colored by strain, 

boxes correspond to the first and third quartiles, and the black bars represent median 

trait values. Low quality wells are censored and outlier values within a strain are 

removed by Tukey's fences (n = 17 - 26 wells per strain). (C) A correlation between 

WormCamp (T0.99) and Lifespan Machine lifespan assessment. Points are median 

lifespan estimates from replicate wells (WormCamp) or plates (Lifespan Machine) and 

are colored by strain. Spearman's rho for all strains (black) and without CX11314 (red) 

 

  

Figure 5: Natural variability in lifespan assessed by WormCamp and Lifespan Machine 
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Figure 6: CNN-based worm detection and counting. (A-C) Demonstrations of CNN-

based worm detection on crowded (A), ideally populated (B), and empty (C) 

WormCamp wells. Red overlay denotes image regions that were classified as worm. (D) 

Correlation between worm fraction (WF) and the number of worms labeled manually in 

test images that were not used for training.  
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Figure 6: CNN-based worm detection and counting
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Figure 7: Centering the bacteria lawn within the well reduces rate of worms escaping 

from wells.  

(A-C) Images of WormCamp wells prepared with the bacteria lawn centered without 

touching the edge of the well (A), somewhat off-center, slightly touching the edge (B), 

very off-center and substantially touching the edge (C). (D) percentage of WF retained 

at day 10 for worms cultured on each lawn type. (E) Ratio of the mean percentage 

retained for the plate (E). For D and E, 10 plates (240 wells) were prepared in total, 

each containing some wells with each lawn type. N = 58, 33, and 91 wells of each type, 

respectively. The remaining wells were excluded due to contamination and/or progeny. 

*** p<0.001, one-way ANOVA followed by Bonferroni-corrected post-hoc comparisons. 

 

Figure 7: Centering of the bacteria lawn within wells reduces escaping

A B C

D E
*** ***

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464905doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464905


	 39	

APPENDIX I: An RNAi screen for aging outcomes using the WormCamp method 

and WormWatcher Robots 

To prepare WormCamps for RNAi we used bacterial clones from the Ahringer RNAi 

Library (Source Bioscience, Nottingham, UK). For each 96-well plate from the library, 

clones on the plate were first transferred using a 96-well replicator device (V&P 

Scientific) to fresh 96-well plates containing LB agar (15 g/L agar and 20 g/L LB) with 

200 μg/mL carbenicillin. Plates were incubated approximately 12 h at 37°C. Bacterial 

cultures were then transferred from the 96 well plate by adding 50 μL of LB broth with 

each well, suspending bacteria by pipetting, and depositing bacteria in one well of a 

deep 24-well plate (EK-2239, E&K Scientific, 10 mL capacity per well) along with an 

additional 7 mL of LB containing 200 μg/mL carbenicillin. The deep plates were covered 

and incubated with shaking at 37°C for approximately 12 h. To induce RNA, we added 

IPTG to a final concentration of 1 mM and incubated bacterial cultures for 2 h. The deep 

well plates were spun down on a centrifuge and most of the supernatant was removed 

using a vacuum aspirator. We pipetted 50 μL of the dense bacteria slurry into each well 

of the 24-well WormCamp plate.  

 

Worms were added to WormCamp plates within several days of plating RNAi bacteria. 

To prepare animals we created synchronized worm cultures using hypochlorite 

bleaching, washed late L4 or young adult animals into tubes using NGM buffer, and 

pipetted a suspension of worms into each WormCamp well. 
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Each 24-well plate was prepared with four EV controls. 40% of plates also contained 

daf-2 RNAi and daf-16 RNAi positive controls. The remaining wells each contained a 

unique test RNAi.  In our screen, daf-16 RNAi strongly decreased relative lifespan 

(Appendix I - Figure 1D) but daf-2 was not significantly different from EV (p=0.16, not 

shown). It is possible that the daf-2 RNAi in this library does not effectively knock down 

DAF-2 function; RNAi libraries are known to be prone to errors (Hansen et al., 2005; 

Jagadeesan and Hakkim, 2018). 

We assayed a total of 18,072 populations, including approximately 2,996 empty vector 

(EV) controls and the remainder exposed to RNAi bacteria.  

Summary statistics, healthspan and lifespan estimates for the RNAi and control 

populations are shown in Appendix I – Figure 1. We expected RNAi wells to show 

more variability in lifespan and healthspan than EV wells, since some gene knockdowns 

increase lifespan and some reduce lifespan. We found that the mean standard deviation 

of both T0.82 and T0.99 metrics was indeed significantly higher in RNAi wells compared to 

EV wells (Appendix I – Figure 1A-C).  

 

During screening we observed and optimized some details of WormCamp preparation, 

particularly to reduce worms escaping from wells (Appendix I – Table 1 and Methods). 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464905doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464905


	 41	

 

Appendix I – Table 1: Automated assessment of data quality  

Quality issue Assessment metric % wells passing 

Initial setup Initial WF > 0.02 86 % 

Escaping 
WF remaining at day 10 is > 50% initial 83 % 

WF remaining at day 20 is > 30% initial 88 % 

Progeny  

WF remaining at day 10 is < 130% initial 93 % 

WF remaining at day 20 is < 130% initial 94 % 

Activity reaches 0 by end of experiment 90 % 

Overall  55 % 

 

Appendix I – Figure 1: RNAi screen for ageing outcomes 

Appendix I - Figure 1: RNAi screen for aging outcomes.
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(A, B) Histograms showing the distributions of T0.82 (A) and T0.99 (B) ratios across all 

RNAis and EV controls included in the screen. Both metrics are normalized to the mean 

of the four EVs on each plate. Wells were excluded if they did not pass quality tests 

(see text), or more than two of the four EVs were excluded due to poor quality. (C) 

Variability index, the mean plate-wise standard deviation of the T0.82 and T0.99 

distributions, is significantly higher for RNAi wells than EV wells (*** p < 0.001, two-

sample t-test). (D) Mean T0.82 and T99 ratios for EV wells, RNAi wells, or daf-16 RNAi 

(positive control) wells from the screen (*** p<0.001, one-way ANOVA followed by 

Bonferroni-corrected post-hoc comparisons). (E) Correlation between lifespan and 

healthspan estimates for each well. (F) Correlation between lifespan estimates and the 

healthspan ratio T0.82/T0.99. 
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Appendix I – Figure 2: Nonuniform lighting intensity does not affect key experimental 

measurements.  

(A, B) Histograms showing the distribution in mean well grayscale intensity (A) and 

intensity relative to the plate average (B) of all wells in the screen. (C) Plate-relative 

intensity averaged across all wells in the same position on the 24-well (4 row x 6 

column) plate. Note that intensity is lowest in the center of the plate, which is also 

furthest from the red LED lights mounted to the moving mirror box. (D-F) Correlation 

between relative intensity and relative total activity, T0.99 and T0.82. For all fits, p < 0.001 

and r2 < 0.08. 

 

A B

C D

E F

Appendix I – Figure 2: Relative gray level not correlated with key metrics
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Appendix I – Figure 3: Principal component analysis of screen dataset 

PCA was performed using all possible estimators Tx as independent variables. (A, B) 

Loading and square of the loading of the first three principal components. (C) 

Percentage of variance explained by principal components 1 through 15. (D) PC1 value 

vs PC2 value of each well, with the color map indicating the T0.99 of that well. Note 

higher T0.99 is associated with both higher PC1 and higher PC2, as expected from (A). 

(E) Hypothetical normalized cumulative activity curves for a reference well, a well higher 

in PC1, which would tend to arise from increases in all Tx according to (A), and a well 

high in PC2, which would arise from a well with increased Tx for x > 0.85 but decreased 

Tx otherwise. 
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C D

E

Appendix I – Figure 3: PCA analysis of screen dataset
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Appendix I – Figure 4: Quantification of worm escaping during screen experiments. 

(A) Histograms showing the distribution of worm fraction (WF) measurements initially 

(defined as the maximum value measured during the first 3 days) and at day 10. Day 10 

mean is significantly lower (p < 0.001, paired t-test). (B) Distribution of the day 10 WF as 

a percentage of the initial WF. (C) Mean and standard deviation WF over time. (D-E) 

correlations between the percent remaining at day 10 and the initial WF or relative gray 

intensity of the well. 
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Appendix I – Figure 4: Escaping is not predicted by initial worm count or  well gray level.
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Appendix I – Figure 5: Initial worm density does not predict lifespan (A), lifespan ratio 

(B), healthspan (C), or healthspan ratio (D).  

 

 

Appendix I – Figure 5: Initial worm count does not predict lifespan or healthspan estimate
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