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ABSTRACT 31 

A central goal of evolutionary genetics in Caenorhabditis elegans is to understand the genetic 32 

basis of traits that contribute to adaptation and fitness. Genome-wide association (GWA) 33 

mappings scan the genome for individual genetic variants that are significantly correlated with 34 

phenotypic variation in a population, or quantitative trait loci (QTL). GWA mappings are a 35 

popular choice for quantitative genetic analyses because the QTL that are discovered 36 

segregate in natural populations. Despite numerous successful mapping experiments, the 37 

empirical performance of GWA mappings has not, to date, been formally evaluated for this 38 

species. We developed an open-source GWA mapping pipeline called NemaScan and used a 39 

simulation-based approach to provide benchmarks of mapping performance among wild 40 

C. elegans strains. Simulated trait heritability and complexity determined the spectrum of QTL 41 

detected by GWA mappings. Power to detect smaller-effect QTL increased with the number of 42 

strains sampled from the C. elegans Natural Diversity Resource (CeNDR). Population structure 43 

was a major driver of variation in GWA mapping performance, with populations shaped by 44 

recent selection exhibiting significantly lower false discovery rates than populations composed 45 

of more divergent strains. We also recapitulated previous GWA mappings of experimentally 46 

validated quantitative trait variants. Our simulation-based evaluation of GWA performance 47 

provides the community with critical context for pursuing quantitative genetic studies using 48 

CeNDR to elucidate the genetic basis of complex traits in C. elegans natural populations.  49 
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INTRODUCTION 50 

Quantitative trait variation in human populations is abundant and arises from genetic 51 

differences between individuals, as well as complementary or detrimental inputs from the 52 

environment. Genetic variation can be statistically linked to phenotypic variance using genome-53 

wide association studies (GWAS). GWAS have uncovered genetic variants that contribute 54 

cumulatively to human disease risk and complex trait variation (Visscher et al. 2017). However, 55 

the most powerful and useful applications of GWAS to complex human traits rely on precise 56 

phenotype measurements from hundreds of thousands of individuals. The subsequent statistical 57 

penalties for multiple comparisons increase as the scale of GWAS increases. Also, many 58 

important sources of variation in disease risk and trait variation cannot be measured ethically, 59 

reliably, and with sufficient statistical power in human populations (e.g., cellular pathology 60 

underlying behavioral traits and variation in diet or xenobiotic exposure underlying metabolic 61 

traits). Finally, GWAS studies have a historical underrepresentation among non-White ethnic 62 

groups created in part by healthcare inequities, which cause polygenic risk scores among these 63 

groups to be significantly less accurate (Martin et al. 2019). This gap underscores an urgent 64 

need for replicable and translatable GWA platforms with the added ability to dissect traits that 65 

are difficult to assay in humans.  66 

The development of genetic reference populations of several organisms has become 67 

increasingly popular and has facilitated the analysis of complex traits. Notable examples of this 68 

include the Drosophila Synthetic Population Resource (King et al. 2012a; b), Drosophila Genetic 69 

Reference Panel (Mackay et al. 2012), the Collaborative Cross (Churchill et al. 2004; Chesler et 70 

al. 2008; Aylor et al. 2011) and Diversity Outbred (Svenson et al. 2012; Churchill et al. 2012) 71 

mouse populations, the hybrid mouse diversity panel for association mapping (Bennett et al. 72 

2010), Arabidopsis MAGIC and recombinant inbred lines (Kover et al. 2009; Klasen et al. 2012), 73 

and nested association mapping lines in both maize (Yu et al. 2008; McMullen et al. 2009) and 74 

sorghum (Bouchet et al. 2017). These genetic reference populations offer tremendous benefits 75 
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for quantitative genetics because they take advantage of well characterized genomic resources, 76 

repeated measurements that can be collected from multiple genetic backgrounds, and 77 

population-wide measurements across diverse individuals that can be made in controlled 78 

environments. The free-living roundworm nematode Caenorhabditis elegans has contributed to 79 

discoveries at every level of biology, has rich genomic resources, and can be easily genetically 80 

manipulated. Over the past few decades, the number of catalogued genetically unique C. 81 

elegans isolates has expanded, giving rise to diverse collections of strains useful for quantitative 82 

genetics (Cook et al. 2017; Lee et al. 2021). For example, the C. elegans Multiparent 83 

Experimental Evolution (CeMEE) lines offer fertile ground for quantitative trait locus (QTL) 84 

mapping with high-resolution and detection power (Noble et al. 2017, 2021). Although rich in 85 

novel haplotypes, the CeMEE panel represents only a fraction of the genetic variation present 86 

across the C. elegans species. Separately, since the generation of the CeMEE panel, the C. 87 

elegans Natural Diversity Resource (CeNDR) has expanded to over 500 unique C. elegans 88 

strains. Genome-wide association (GWA) mapping has repeatedly linked phenotypic variation of 89 

all types to alleles segregating among these strains (Ghosh et al. 2012; Ashe et al. 2013; Cook 90 

et al. 2016; Zdraljevic et al. 2017, 2019; Lee et al. 2017, 2019; Laricchia et al. 2017; Hahnel et 91 

al. 2018; Webster et al. 2019; Gimond et al. 2019; Na et al. 2020; Evans et al. 2020, 2021a; b; 92 

Zhang et al. 2021). However, GWA mapping has not, to date, been formally evaluated for its 93 

power and precision to detect QTL across a range of genetic architectures. 94 

 The ability to identify functional natural variation in complex traits in C. elegans using 95 

genome-wide association is confounded by idiosyncratic genomic features. For instance, 96 

adaptation to human-associated habitats is hypothesized to have caused the generation of 97 

haplotypes with signatures of selective sweeps among many wild C. elegans strains. Within 98 

these swept haplotypes, genetic variation is drastically reduced and long-range linkage 99 

disequilibrium is high - sometimes stretching over 85% of whole chromosomes (Andersen et al. 100 

2012). Approximately 66% of the C. elegans strains available in CeNDR contain at least one 101 
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chromosome of which at least 30% can be categorized as a swept haplotype. The unintended 102 

consequence in GWA mapping is that, if the phenotype of interest happens to segregate with a 103 

common swept haplotype, it is likely that insufficient ancestral recombination has occurred 104 

across the associated swept haplotype to resolve single candidate loci. By contrast, C. elegans 105 

strains from Hawaii harbor nearly three times the levels of genetic diversity of non-Hawaiian 106 

strains and often lack signatures of recent selection in spite of recent migration and gene flow 107 

(Crombie et al. 2019). Furthermore, genetically distinct C. elegans strains contain 108 

“hyperdivergent” regions (Thompson et al. 2015) (regions of the genome characterized by high 109 

allelic diversity and, therefore, uncertainty in gene content compared to the N2 reference 110 

genome) that segregate at varying frequencies. These regions are hypothesized to be 111 

maintained by balancing selection and are predicted to harbor alleles for biological processes 112 

that are crucial for environmental sensing, pathogen responses, and xenobiotic stress 113 

responses (Lee et al. 2021). These observations suggest that evolutionary biology is 114 

inextricable from GWA mapping performance in C. elegans and that the conclusions drawn 115 

about complex trait variation from these analyses are dictated by the population structure of the 116 

mapping population. However, the magnitude of the effect of population structure and 117 

segregating hyperdivergent regions on mapping performance has not been quantified. In order 118 

to assess how mapping performance varies as a function of population composition, we require 119 

an approach that can rapidly simulate GWA mappings and address important caveats unique to 120 

C. elegans genome biology. 121 

 We have developed NemaScan, an open-source pipeline for GWA mapping in C. 122 

elegans. NemaScan offers two profiles: a mapping profile where users can supply population-123 

specific variant information and a phenotype to perform their own analyses on real data and a 124 

simulation profile where users can supply a variety of parameters to provide baseline 125 

performance benchmarks for a past, present, or prospective experiment. These parameters 126 

include trait heritability, polygenicity, a minimum minor allele frequency for variants included in 127 
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the marker set, custom sample populations, and specific regions of interest where QTL are 128 

simulated and mapped iteratively. NemaScan makes use of two different formulations of the 129 

genomic relationship matrix in attempts to correct for varying types of population structure 130 

known to exist across the C. elegans species. We present empirical estimates of detection 131 

power and false discovery rates derived from the simulation profile for GWA mapping across 132 

different genetic architectures, and we confirm that GWA mappings in C. elegans robustly 133 

identify most large-effect QTL. We also demonstrate that GWA performance in C. elegans is 134 

improved by both increasing the number of strains tested in a population and homogenizing the 135 

genetic makeup of the population in question with respect to swept haplotypes. Finally, we 136 

quantify the precision of GWA mapping when QTL are present on different chromosomes and 137 

within hyperdivergent regions that segregate in swept and divergent populations. These 138 

performance benchmarks provide the C. elegans community with critical context for interpreting 139 

the results of ongoing quantitative genetic studies using CeNDR, and in so doing, increase our 140 

understanding of the genetic basis of complex traits in C. elegans. 141 

  142 

  143 
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MATERIALS AND METHODS 144 

 145 

Additions to the Caenorhabditis elegans Natural Diversity Resource (CeNDR) 146 

CeNDR is composed of 1,379 unique C. elegans isolates. The process of isolating and 147 

identifying unique C. elegans strains, generating whole-genome sequence data, and calling 148 

high-quality variants has been described in-depth previously (Crombie et al. 2019; Lee et al. 149 

2021). Briefly, nematodes that could be unambiguously described as C. elegans by both 150 

morphological characteristics and ITS2 sequencing were reared, and genomic DNA from these 151 

strains (n = 1238) was isolated and whole-genome sequenced. High-quality, adapter-trimmed 152 

sequencing reads were aligned to the N2 reference genome and SNVs were called for each 153 

strain using BCFtools. After variant quality filtering, the pairwise genetic similarity of all strains is 154 

considered. Strains which share alleles across at least 99.97% of all segregating sites are 155 

considered members of the same isotype group. After measuring concordance among all 156 

strains, 540 unique isotype groups were identified. In this manuscript, we use the term “strain” to 157 

refer to each strain chosen to represent the collection of genetically similar strains within that 158 

isotype group (i.e., “isotype reference strain”). All data used in GWA mapping simulations 159 

(isotype-level hard-filtered SNVs, sweep haplotype calls, and hyperdivergent region calls) were 160 

downloaded from the 20210121 CeNDR release 161 

(https://www.elegansvariation.org/data/release/latest).  162 

 163 

Genome-wide association (GWA) mapping simulations 164 

All GWA mapping simulations were completed using the simulation profile of the 165 

NemaScan pipeline, available at https://github.com/AndersenLab/NemaScan. The VCF file was 166 

then pruned for variants in r2 ≥ 0.8 within 50 kb windows obtained in ten-variant steps and 167 

filtered to contain variants with a minor allele frequency greater than or equal to the user-168 
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supplied minor allele frequency cutoff. The LD-pruned and MAF-filtered VCF was then used to 169 

construct a genomic relationship (kinship) matrix among all strains using the --make-grm and --170 

make-grm-inbred function from GCTA. The algorithm for constructing the genomic relationship 171 

matrix and its benefits for association mapping has been described in-depth elsewhere (Jiang et 172 

al. 2019). Separately, the user-specified number of causal variants are then sampled from LD-173 

pruned and MAF-filtered VCF and assigned effects sampled from the user-specified effect 174 

distribution (either Uniform [a,b] (where a = the user-specified minimum effect and b = the user-175 

specified maximum effect) or Gamma (k = 0.4, θ = 1.66)). Once these effects were assigned to 176 

causal variants, phenotype values were then simulated for each of the strains in the supplied 177 

population using the --simu-causal-loci function from GCTA and the user-specified trait 178 

heritability. Simulated phenotypes, filtered variants, and the genomic relationship matrix were 179 

brought together to perform rapid GWA using the --mlma-loco and --fastGWA-lmm-exact 180 

functions by GCTA. The former function accepts a limited sparse kinship matrix composed of all 181 

chromosomes except the chromosome containing the tested marker (LOCO = “leave one 182 

chromosome out”), and the latter accepts a full sparse kinship matrix specifically calculated for 183 

inbred model organisms. 184 

 185 

Performance Assessment 186 

Raw mapping results were aggregated by finding the lowest p-value for each marker 187 

comparing the GWA mapping results from both functions. This aggregation step is performed to 188 

take advantage of the benefits provided by the LOCO approach and the inbred kinship matrix 189 

simultaneously. The aggregated mapping results were then processed to determine whether 190 

each SNV exceeds the user-specified threshold of statistical significance. The user has three 191 

choices of significance thresholds: i) Bonferroni correction using all tested markers (“BF”), ii) 192 

Bonferroni correction using the number of independent tests determined by eigendecomposition 193 

of the population VCF (“EIGEN”), or iii) any nominal value supplied by the user. The phenotypic 194 
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variance explained by each SNP was also calculated using a simple ANOVA model using the 195 

simulated phenotypes as a response and the allelic state of each strain as a factor. SNVs 196 

exceeding the user-specified significance threshold were then grouped into QTL “regions of 197 

interest”, motivated by the fact that C. elegans can be rapidly crossed to generate NILs 198 

harboring small introgressed regions to localize candidates using fine mapping. Regions of 199 

interest were determined by finding significantly associated markers within one kilobase of one 200 

another. Once no more markers met this criterion, the region of interest was extended on each 201 

flank by a user-specified number of markers. The QTL region of interest was denoted by the 202 

peak association found within the region and was assigned the phenotypic variance explained 203 

by that peak marker and its frequency in subsequent analyses.  204 

We then cross-referenced simulated causal variants for each mapping and asked 205 

whether any detected QTL region of interest overlapped with a simulated causal variant. The 206 

possible outcomes regarding the performance of GWA mapping to detected simulated causal 207 

variants were (1) a simulated causal variant was significantly associated with phenotypic 208 

variation and was the peak association within a region of interest, (2) a simulated causal variant 209 

was significantly associated with phenotypic variation but was not the peak association within a 210 

region of interest, (3) a simulated causal variant was not significantly associated with phenotypic 211 

variation but still fell within a QTL region of interest, and (4) a simulated causal variant was 212 

neither associated with phenotypic variation nor fell within a QTL region of interest. For each 213 

replicate mapping, we calculated detection power as the number of causal variants that adhered 214 

to criteria (1) or (2) and divided them by the total number of causal variants simulated for that 215 

mapping. QTL regions of interest that did not contain a simulated causal variant were tabulated 216 

as false discoveries, and the false discovery rate (FDR) was calculated as the number of QTL 217 

regions of interest that did not contain a simulated variant divided by the total number of QTL 218 

regions of interest for each mapping. For analyses assessing the ability of GWA mappings to 219 

detect causal variants explaining a particular amount of phenotypic variance, detection power 220 
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was calculated by first determining the number of causal variants that adhered to criteria (1) or 221 

(2) and that explained that amount of phenotypic variance. We then divided them by the total 222 

number of causal variants simulated that explained the same amount of phenotypic variance 223 

across all mappings (instead of individual replicates). 224 

 225 

Demographic Characterization of Strains 226 

Haplotype data for 540 C. elegans strains was obtained from the 20210121 CeNDR 227 

release. The degree of swept haplotype sharing among strains was determined in a similar 228 

fashion to that previously described (Crombie et al. 2019; Lee et al. 2021; Zhang et al. 2021). 229 

Briefly, the length of every haplotype present in each strain was recorded, and if regions sharing 230 

the most common haplotype were longer than 1 Mb, these haplotypes were recorded as swept 231 

haplotypes. Haplotypes outside of these highly shared regions were recorded as divergent 232 

haplotypes. Only swept haplotypes on chromosomes I, IV, V, and X were considered in strain 233 

classification because selective sweeps are not found on chromosomes II and III. If swept 234 

haplotypes composed greater than or equal to 30% of the length of these chromosomes, that 235 

chromosome was considered swept. Swept strains were determined as those strains that 236 

contain at least one swept chromosome, and divergent strains are those strains that do not. In 237 

total, 357 swept and 183 divergent strains were identified. Some populations used in 238 

simulations were constructed by sampling among these swept and divergent strains (Figure 3), 239 

and others were sampled from the overall collection of 540 strains (Figure 2, Figure 3). In 240 

simulations comparing QTL simulated in hyperdivergent regions from those simulated outside of 241 

such regions, we compared 182 swept strains to 183 divergent strains selected on the basis of 242 

containing at least 37 hyperdivergent regions, regardless of their population frequency. 243 

Dendrograms representing population differentiation were constructed for these swept and 244 

divergent populations by filtering genetic variants identically to NemaScan and passing these 245 

variant calls to vcf2phylip (Ortiz 2019) and QuickTree (https://github.com/khowe/quicktree). 246 
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 247 

Statistical Testing 248 

 Determinations of significant differences in performance among experimental factors 249 

were determined using both parametric and non-parametric specifications of power or empirical 250 

FDR as a response. Simulation regimes where only one QTL was specified for each simulated 251 

mapping resulted in a binary distribution of power output, and therefore differences in 252 

performance as a function of experimental factors were determined using the Kruskall-Wallis 253 

test. Differences between all pairwise contrasts of factor levels were determined using the 254 

Dunn’s test. In cases where multiple experimental factors were considered simultaneously (for 255 

example, whether mapping strain set and the location of the single simulated QTL interacted to 256 

determine performance), factors were combined to make an aggregate factor and tested using 257 

the Kruskall-Wallis test. When the specified number of QTL were greater than one, differences 258 

in performance as a function of single and multiple factors were determined using the One-Way 259 

ANOVA and Two-Way ANOVA tests, respectively, and followed up with post hoc tests using 260 

Tukey’s HSD. 261 

 262 

Data Availability 263 

The simulation and mapping profiles of NemaScan are available for download at 264 

https://github.com/AndersenLab/NemaScan and are accessible with the same pipeline. Users 265 

are invited to use NemaScan to perform GWA mappings on their own traits of interest or 266 

leverage the simulation framework to explore the potential of GWA for their own traits of interest 267 

or to assess the likelihood of previous mapping results. In addition, all parameter specifications 268 

used to generate the mappings in this manuscript are contained in Supplemental Table 1. All 269 

code and data used to replicate the data analysis and figures presented are available for 270 

download at https://github.com/AndersenLab/nemascan_manuscript. All variant calls, 271 

hyperdivergent region calls, and selective sweep haplotype calls are available at 272 
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https://www.elegansvariation.org/data/release/latest. Finally, prospective users are also 273 

encouraged to use NemaScan to perform their own mappings at 274 

https://www.elegansvariation.org/mapping/perform-mapping/.  275 

  276 
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RESULTS 277 

GCTA software improves C. elegans GWA power and precision 278 

The previous GWA mapping workflow, cegwas2-nf (Zdraljevic et al. 2019), was built on 279 

the foundation of kinship matrix specification using EMMA or EMMAX (Kang et al. 2008, 2010) 280 

implemented by R/rrBLUP (Endelman 2011) as the association mapping algorithm. However, 281 

with the advent of more efficient and flexible algorithms, we wondered whether GCTA offered 282 

better performance. We first optimized the algorithm used for fitting linear mixed models and 283 

estimating kinship among individuals in the GWA mapping. Simulations were performed using 284 

four different association mapping algorithms, of which three are different implementations of 285 

association mapping using GCTA software (Yang et al. 2011; Jiang et al. 2019). (1) EMMA: 286 

GWA mapping using R/rrBLUP fits a kinship matrix and performs association using variance 287 

components using the “P3D = TRUE” option. (2) LMM-EXACT-LOCO: GCTA-LOCO fits a 288 

kinship matrix constructed using all chromosomes except for the chromosome harboring the 289 

tested genetic variant (“leave one chromosome out”). (3) LMM-EXACT: fastGWA fits with a 290 

sparse kinship matrix using all chromosomes. (4) LMM-EXACT-INBRED: fastGWA fits a sparse 291 

kinship matrix tailored towards populations composed of inbred organisms. 292 

We next used convenient features offered by GCTA to simulate quantitative traits (--293 

simu-qt) and assign effects to QTL (--simu-causal-loci) across a panel of real C. elegans 294 

genomes. The statistical properties of each mapping algorithm have been reported elsewhere 295 

(Yang et al. 2011; Jiang et al. 2019). To begin, we used a population of 203 isolates that were 296 

previously measured for susceptibility to albendazole (Hahnel et al. 2018). We simulated 50 297 

quantitative traits with increasing narrow-sense heritability (the proportion of phenotypic 298 

variance explained by specific genetic differences between strains, h2), ranging from 0.1 to 0.9, 299 

supported by either a single QTL or five independent QTL. Each QTL was assigned a large 300 

effect size sampled from a uniform distribution (Supplemental Figure 1) to increase the 301 

likelihood that at least one true QTL was detected in each simulation. 302 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.09.459688doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.09.459688
http://creativecommons.org/licenses/by/4.0/


We measured the statistical power and the empirical false discovery rate (FDR; the 303 

proportion of detected QTL regions that lack a simulated causal variant exceeding the multiple 304 

testing correction significance threshold) of each association mapping workflow across varying 305 

levels of trait heritability and for traits supported by either one or five QTL. We observed that 306 

GCTA-based workflows were more powerful than EMMA for almost every simulated genetic 307 

architecture (Supplemental Figure 2A). When mapping a single causal QTL, we observed that 308 

algorithms exhibited almost identical power when that QTL explained at least 30% of the 309 

phenotypic variance (Kruskall-Wallis test, p ≥ 0.295). However, when traits were supported by 310 

five QTL, power varied among algorithms and increased as a function of trait heritability. When 311 

h2 < 0.4, the algorithms exhibited no significant differences in detection power (Kruskall-Wallis 312 

test, p ≥ 0.276). When h2 ≥ 0.4, algorithms diverged in performance, with LMM-EXACT and 313 

LMM-EXACT-INBRED algorithms generally exhibited lower power than both the EMMA and 314 

LMM-EXACT-LOCO algorithms (Dunn test, padj ≤ 0.01385). Furthemore, the LMM-EXACT-315 

LOCO algorithm exhibited significantly greater power than EMMA for traits with h2 > 0.7 (Dunn 316 

test, padj ≤ 0.00826) (Supplemental Table 2). We also observed only modest differences in 317 

empirical false discovery rates (FDR) among algorithms at different trait heritabilities, among 318 

them being that the LMM-EXACT-LOCO and LMM-EXACT-INBRED algorithms often exhibited 319 

lower empirical FDR than both the EMMA and LMM-EXACT algorithms (Supplemental Figure 320 

2B, Supplemental Table 3). These results indicated that mapping algorithms implemented by 321 

GCTA have equal or greater power for QTL detection and lower FDR in C. elegans than the 322 

previous implementation of GWA mapping using EMMA. 323 

The observation that either the LMM-EXACT-LOCO or LMM-EXACT-INBRED algorithms 324 

exceeded the QTL detection power of EMMA across a range of trait heritabilities motivated us to 325 
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integrate both mapping algorithms into new simulation and mapping profiles. In future 326 

simulations presented here and in the mapping workflow available on CeNDR, traits are 327 

mapped using both the LMM-EXACT-LOCO and LMM-EXACT-INBRED algorithms, and 328 

mapping results from each are combined by taking the lower p-value from each algorithm’s 329 

association test for every marker. Although this approach may inflate the FDR for a given 330 

mapping, we prioritized a more flexible range of detection power in order to provide researchers 331 

with greater potential for QTL discovery for diverse types of traits and differentially stratified 332 

populations given that the algorithms specify genetic covariance differently. Mapping results 333 

provided using CeNDR include the combined mapping results with metadata, as well as raw 334 

individual mapping outputs for both algorithms if researchers prefer the handling of the genomic 335 

relatedness from one algorithm over the other. This combined output integrated into distinct 336 

simulation and mapping profiles is the foundation of our new GWA mapping workflow, called 337 

NemaScan. 338 

 339 

Genetic architecture dictates the spectrum of C. elegans QTL detection using GWA mapping 340 

One of the most critical benchmarks for GWA mapping in C. elegans is the number of 341 

QTL underlying complex traits that can be detected. Traits of particular interest are noisy or 342 

highly sensitive to environmental perturbations, controlled by many genes with relatively small 343 

effects, or controlled by collections of alleles at varying frequencies in the sample population. In 344 

order to quantify the ability of NemaScan to identify QTL in natural populations of wild isolates, 345 

we performed simulations making changes to the genetic architectures of simulated traits. First, 346 

simulated QTL effects were drawn from a Gamma (k = 0.4, θ = 1.66) distribution, conforming to 347 

the assumption that the natural genetic variants underlying complex traits and adaptation 348 

primarily contribute small phenotypic effects but occasionally  349 

 350 

 351 
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352 
Figure 1: Performance benchmarks for GWA mapping of complex traits in C. elegans. 353 
Estimates of power (A) and false discovery rate (B) as a function of the narrow-sense heritability 354 
[0.2 (red), 0.4, (orange), 0.6 (yellow), 0.8 (green)] and number of causal QTL (ranging from 1-50 355 
QTL) underlying quantitative traits (x-axis). (C) The empirical phenotypic variance explained by 356 
each simulated QTL among all architecture regimes, broken out by whether the causal QTL was 357 
the top association within a QTL region of interest (dark blue), significant (and thereby 358 
exceeding the threshold of significance by multiple testing, light blue), or not a significant 359 
association but residing within the QTL region of interest (slate grey) or outside any region of 360 
interest (red). Lines stretching from each point represent the standard deviation of the 361 
performance estimate among all replicate mappings in (A) and (B). Square boxes linked to black 362 
dots in (C) contain the median simulated variance explained by each QTL for that association 363 
category within an architecture regime. 364 
 365 

exert moderate or large effects (Supplementary Figure 3). Second, because experimenters 366 

have limited control over the realized heritability of their trait of interest, traits were simulated 367 

with h2 = 0.2, 0.4, 0.6, or 0.8. For each heritability specification, traits were either supported by 368 

1, 5, 10, 25, or 50 QTL to examine GWA performance across a broad spectrum of genetic 369 
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architectures. Third, we simulated each of these genetic architectures in the complete set of 540 370 

wild isolates currently available from CeNDR to determine the expected performance in the 371 

theoretical case where every available genetic background is assayed for a phenotype of 372 

interest. 373 

We observed that detection power decreased as a function of the number of supporting 374 

QTL for each simulated trait, regardless of its heritability. In the simplest case where a single 375 

QTL accounted for all of the phenotypic variance, mappings exhibited at least 97% power to 376 

detect it on average. However, detection power decreased as simulated trait complexity 377 

increased, especially for less heritable traits (Figure 2A). NemaScan exhibited only 33.2% 378 

power to detect five QTL architectures and only 7.6% power to detect 50 QTL architectures, 379 

corresponding to detecting on average 1.66 true QTL out of five or 3.78 true QTL out of 50, 380 

respectively. Depending on the number of simulated QTL, detection power increased by 381 

between a two-fold (five QTL) to six-fold (50 QTL) magnitude by increasing trait heritability from 382 

0.2 to 0.8. The empirical FDR also decreased as a function of genetic complexity (Figure 2B). 383 

Mappings of five QTL architectures produced a mean FDR of 11.8%, and mappings of 50 QTL 384 

architectures produced a mean FDR of 0.41%. Among traits supported by the same number of 385 

QTL, FDR increased with trait heritability but to a much lesser extent than detection power. 386 

These results demonstrated that features of complex traits that alter performance of GWA 387 

mappings in other model systems generally also extend to relatively small C. elegans sample 388 

populations. By quantifying increases in power and FDR across various genetic architectures, 389 

we also provide performance benchmarks for GWA mappings in C. elegans and emphasize that 390 

obtaining more precise phenotype measurements, and thereby reducing environmental noise, 391 

improves the prospects of precise QTL detection across C. elegans strains. 392 

In C. elegans as well as other systems, the power to detect causal alleles underlying 393 

QTL in natural populations is limited in part by their frequency and effect size, which together 394 

contribute to the fraction of phenotypic variance explained by that QTL. We calculated the 395 
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phenotypic variance explained by each causal QTL across all simulations and found that true 396 

positive QTL (simulated QTL with significant trait associations) had significantly greater 397 

explanatory power than false negative QTL (causal QTL without significant trait associations) 398 

within all combinations of trait heritability and polygenicity regimes (One-Way ANOVA, Tukey 399 

HSD, padj < 0.05) except for one QTL and h2 = 0.2 (One-Way ANOVA, Tukey HSD, padj ≥ 0.962) 400 

(Figure 2C). We also observed that the simulated variance explained by significantly associated 401 

true positive markers was significantly different among all trait heritability and polygenicity 402 

combinations. The median simulated variance explained by top hits in polygenic architecture 403 

simulations ranged from 7.41% (h2 = 0.2; 50 QTL) to 42.35% (h2 = 0.8; five QTL), and the 404 

median simulated variance explained by false negative QTL consistently remained below 2%. 405 

When markers with the highest statistical association were also the causal markers, they 406 

explained significantly more phenotypic variance than significantly associated causal markers 407 

that were not peak associations (One-Way ANOVA, Tukey HSD, padj < 0.05), except for traits 408 

supported by one QTL (One-Way ANOVA, Tukey HSD, padj ≥ 0.073). We conclude from these 409 

patterns that QTL detected through GWA mapping in C. elegans were indeed enriched for 410 

alleles with outsized effects on trait variation, explaining smaller amounts of the total trait 411 

heritability as trait complexity increased. 412 

 413 

Sample size and population structure modulates the sensitivity of GWA mapping in C. elegans 414 

A common practical limitation of the scope and performance of any GWAS is the size of 415 

the sample population for which phenotypes have been measured. C. elegans GWA mappings 416 

are no exception, despite high-throughput phenotypic platforms becoming more commonplace 417 

in studies of natural phenotypic variation (Yemini et al. 2013; Andersen et al. 2015). We 418 

quantified the detection power of NemaScan when applied to complex traits given the finite 419 
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sampling potential of a typical GWA experiment. To accomplish this simulation, we subsampled 420 

the 540 CeNDR isolates at five different depths (n =  421 

Figure 2: Impact of sample size and strain selection on sensitivity of QTL detection. 422 
Power estimates (A) for GWA mappings conditioning on the variance explained by underlying 423 
QTL as a function of sample size and strain selection are shown. The corresponding breakdown 424 
of the abundance of QTL explaining increasing phenotypic variance (B) and the minor allele 425 
frequencies (MAF, C) of these QTL are shown. 426 
 427 

100, 200, 300, 400, or 500) 50 times each. We then measured the sensitivity of GWA mappings 428 

to detect simulated QTL according to the phenotypic variance that they explained by grouping 429 

simulated QTL into bins representing increasing influence on trait variation. Among all QTL 430 

simulated, we found no clear differences in minor allele frequencies among populations of 431 

different sizes (Supplemental Figure 4). 432 

We first observed that, as expected, overall detection power generally increased as a 433 

function of sampling depth. The average power to detect five QTL among 100 subsampled 434 

strain mappings was 0.33 ± 0.15 (roughly one QTL out of five), increasing to 0.46 ± 0.18 (at 435 

least two QTL out of five) among 500 subsampled strain mappings (Table 1). The observation 436 

of roughly 46% power to detect five QTL at h2 = 0.8 among 500 subsampled strains is 437 
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consistent with our previous simulation results (Figure 1A) and indicates that as the number of 438 

strains in CeNDR expands so will the potential for NemaScan to detect all of the QTL for a given  439 

Sample Size Power FDR 

100 0.33 ± 0.15 0.61 ± 0.25 

200 0.39 ± 0.16 0.48 ± 0.27 

300 0.42 ± 0.17 0.41 ± 0.27 

400 0.44 ± 0.18 0.32 ± 0.25 

500 0.46 ± 0.18 0.27 ± 0.24 

Table 1: Power and FDR estimates for GWA mappings performed with subsampled populations 440 
of increasing depth. 441 
 442 

trait. We also observed that the impact of increasing sample size was most striking when 443 

considering the sensitivities of mappings to detect QTL with smaller effects (Figure 2). Both 444 

100-strain and 500-strain mappings had greater than 80% power to detect QTL that explained 445 

greater than 50% of the phenotypic variance. However, the power of 500-strain mappings to 446 

detect QTL explaining as little as 7.5% of the phenotypic variance (0.52 ± 0.2) was nearly five 447 

times greater than that of 100-strain mappings (0.11 ± 0.1) (Supplemental Table 4). These 448 

results indicate that power to detect QTL with large effects increased only marginally with 449 

increasing sampling depth, and power to detect QTL with smaller effects improves significantly 450 

by adding more strains to mapping populations. 451 

We then measured GWA mapping performance in sets of strains that were distinguished 452 

by presence of haplotypes shaped by past selective sweeps (Andersen et al. 2012; Crombie et 453 

al. 2019; Zhang et al. 2021). Using the criterion of whether strains harbored at least one 454 

chromosome composed of at least 30% swept haplotypes, we divided the 540 strains into two 455 

groups: “swept” strains (n = 357) and “divergent” strains (n = 183). We then simulated and 456 

mapped 50 quantitative traits supported by 10 QTL and h2 = 0.8, and QTL effects were once 457 

again sampled from a Gamma (k = 0.4, θ = 1.66) distribution. We performed these simulations 458 
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using populations of equal sampling depth (n = 144) from swept strains, divergent strains, and 459 

144 randomly sampled strains from the entire CeNDR strain collection.  460 
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We observed that strain selection has a large impact on the sensitivity with which QTL of 461 

varying importance are detected. We also observed that the power to detect QTL explaining 462 

increasing amounts of phenotypic variance differed dramatically between mappings among 463 

strains with similar genome-wide signatures of positive selection and randomly subsampled 464 

populations of equal depth (Figure 3A). Two patterns emerged from these results. First, swept 465 

populations exhibited greater detection power than other populations for QTL that explained 466 
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greater than 10% of the phenotypic variance. Furthermore, for QTL that explained more than 467 

20% of the phenotypic variance, swept strains exhibited roughly 95% power and other  468 

Figure 3: Population composition alters performance and underlying distribution of 469 
variants. The fraction of simulated QTL detected by GWA (A) and their minor allele frequencies 470 
(B) are plotted as a function of the variance they explain and strain selection. (C) The underlying 471 
distributions of minor allele frequencies and effects of all simulated QTL for each population are 472 
displayed. 473 
 474 

populations exhibited less than 62% power (Supplemental Table 5). Second, for QTL 475 
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explaining greater than 20% of the phenotypic variance, populations assembled without regard 476 

for selective sweep haplotypes exhibited lower power than both swept and divergent 477 

populations, despite divergent populations having, on average, lower minor allele frequencies of 478 

detected and simulated QTL with detected QTL explaining similar amounts of phenotypic 479 

variance (Figure 3B,C). Nevertheless, these initial simulated mappings provide evidence that 480 

strain choice as well as sampling depth dictate the realized genetic architecture of C. elegans 481 

quantitative traits. 482 

 483 

Fine-scale genomic landscape of GWA performance in C. elegans 484 

The genomes of C. elegans wild isolates have been heavily shaped by the evolution of 485 

self-fertilization. The recombination rate across the arms of chromosomes is significantly higher 486 

than across centers (Rockman and Kruglyak 2009). Many C. elegans strains harbor selective 487 

sweep haplotypes from which recent adaptation to human-associated niches has purged 488 

genetic diversity (Andersen et al. 2012; Zhang et al. 2021) and hyperdivergent regions that 489 

maintain the variation necessary for evolvability (Lee et al. 2021). Selective sweep and 490 

hyperdivergent region haplotype frequencies and distributions vary across wild isolates, 491 

motivating us to ask whether heterogeneity in GWA sensitivity among populations with different 492 

demographics can be partly explained by which chromosomes QTL are located and whether 493 

these QTL are also located in hyperdivergent regions. In order to assess these points, we 494 

simulated 100 mappings of a single QTL with a defined effect size in a population of 182 swept 495 

strains and a population of 183 divergent strains. For each set of 100 mappings, the locations of 496 

the simulated QTL were constrained to i) a particular chromosome, ii) the region of the 497 

chromosome (arms or centers), or iii) within or outside of divergent regions. For each mapping, 498 

the heritabilities of the simulated traits were also set to 0.2, 0.5, or 0.8. 499 

We observed several critical differences in mapping performance across different 500 

regions of the genome and between divergent and swept mapping populations (Figure 4A). At 501 
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low trait heritability, power to detect QTL was significantly lower among divergent strains than 502 

swept strains across all chromosomes, regardless of whether they were in divergent regions,   503 

 504 

Figure 4: Evolutionary history dictates the fine-scale landscape of GWA performance. A) 505 
The mean fraction of simulated QTL detected by GWA (circles, solid lines) and the empirical 506 
FDR (diamonds, dashed lines) are plotted as a function of different genomic locations where 507 
QTL were simulated: among hyperdivergent regions with respect to the N2 reference genome, 508 
or among all other loci, as well as on the low-recombination centers or high-recombination arms 509 
of chromosomes. Shading of blue and orange points in A) corresponds to chromosome I 510 
(lightest) to chromosome X (darkest) in order. The phylogenetic relationship of each mapping 511 
population are shown in B) (183 divergent strains, blue) and C) (182 swept strains, orange). 512 

 513 

arms, or centers of the chromosome (Kruskall-Wallis test; p < 0.0004). We also observed subtle 514 

differences in the relative detection power for QTL within certain chromosomes within these 515 

classes (Supplemental Table 6). Strain sets exhibited identical power to detect QTL genome-516 

wide when h2 = 0.8. The empirical false discovery rate of mappings was significantly greater in 517 

mappings among divergent strains than swept strains regardless of the location of simulated 518 

QTL (Kruskall-Wallis test; p < 0.00001). These differences are likely caused by the large extent 519 

to which the divergent population was structured into distinct clusters (Figure 4B), and the 520 
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swept population much closely approximates a star phylogeny because most variation in the 521 

population segregates on a much more common genetic background of swept haplotypes 522 

(Figure 4C). These results confirm a clear effect of population structure and evolutionary history 523 

in the species on both genome-wide precision and local detection power of GWA mapping. 524 

We also investigated whether certain genomic regions provided varying performance for 525 

GWA mapping in C. elegans, motivated by the observation of varying population recombination 526 

rates on the arms and centers of chromosomes (Rockman and Kruglyak 2009), common 527 

selective sweep haplotypes in certain C. elegans populations (Andersen et al. 2012; Zhang et 528 

al. 2021), and hyperdivergent haplotypes that segregate among wild strains (Lee et al. 2021). 529 

Within the swept population, we observed no significant differences in power to detect QTL 530 

simulated in hyperdivergent regions nor on chromosome arms compared to centers (h2 = 0.2, 531 

Kruskall-Wallis test; p = 0.0795). By contrast, power to detect QTL within the divergent 532 

population differed as a function of whether they were simulated in hyperdivergent regions or 533 

different parts of the chromosome (h2 = [0.2, 0.5]; Kruskall-Wallis test, p < 0.0001; Dunn test, 534 

padj < 0.02) (Supplemental Table 7). Once again, the empirical false discovery rate among 535 

divergent regions and different chromosomal regions varied significantly for all trait heritabilities 536 

within both the divergent and swept strain set (Kruskall-Wallis test; p < 0.02) (Supplemental 537 

Table 8).  538 

Finally, we asked whether GWA mapping performance varied between chromosomes 539 

controlling for historic recombination rate differences or the population divergence of 540 

haplotypes. We only observed one case where detection power varied significantly among 541 

chromosomes - power to detect QTL outside of hyperdivergent regions on the center of 542 

chromosome III was significantly lower than that observed for chromosomes I, IV, V, and X at h2 543 

= 0.5 (Dunn test, padj ≤ 0.0103) among divergent strains (Supplemental Table 9). Notably, this 544 

chromosome also harbors the fewest sweep haplotypes in the C. elegans population, which 545 
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could indicate that this local dip in power could be caused by a local enrichment of rare 546 

haplotypes among more divergent strains in the population. Empirical FDR varied significantly 547 

among chromosomes in several instances among both divergent and swept strain sets 548 

(Kruskall-Wallis test; p < 0.05) (Supplemental Table 10). Taken together, these results 549 

demonstrate that differences in GWA mapping performance arising from strain composition 550 

differences are likely caused in part by the unique patterns of genetic variation throughout the 551 

C. elegans genome. 552 

 553 

NemaScan recapitulates previously validated genetic associations 554 

Previous work has used GWA mappings to identify QTL and subsequently identify 555 

quantitative trait variants (QTV) in C. elegans (Evans et al. 2021b). In order to test whether 556 

NemaScan performs similarly in practice to cegwas2-nf, the previous mapping pipeline 557 

(https://github.com/AndersenLab/cegwas2-nf) that used the EMMA algorithm (Kang et al. 2008) 558 

implemented by R/rrBLUP (Endelman 2011), we re-mapped five quantitative traits using both 559 

cegwas2-nf and NemaScan. Raw trait files were downloaded from the supplemental materials 560 

for each published mapping and re-mapped using the 20210121 CeNDR release VCF. In each 561 

case, the major QTL underlying each trait were mapped using both platforms (Figure 5A). Of 562 

the 16 QTL identified across the previously mapped traits, 14 were recovered by NemaScan. 563 

Furthermore, in some instances NemaScan was qualitatively more specific with respect to QTL 564 

identification. For example, in the original mapping of arsenic resistance, two QTL in significant 565 

LD were identified on chromosomes I and III. Because these sets of markers have identically 566 

significant association scores across the interval, the most likely cause of this association is that 567 

population structure among the phenotyped strains is causing an entire shared haplotype to be 568 

tagged as significant. When mapped with NemaScan, the significance of this association was 569 

slightly lower than that of the previous mapping. Similarly, the two previously mapped abamectin 570 

resistance QTL were detected and assigned greater significance by NemaScan (Supplemental 571 
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Figure 5). These findings confirm that NemaScan has sufficient detection power to recapture 572 

known genetic architectures of real traits, including many with empirically proven QTV. Among 573 

each of these mappings, we observed that the aggregated 574 

Figure 5: GWA mapping with NemaScan recaptures previously validated QTVs. A) 575 
Significant genetic associations are shown genome-wide for five quantitative traits that were re-576 
mapped using the 20210121 CeNDR release both with cegwas2-nf (“Previous Mappings”) and 577 
NemaScan, and the strength of the association is displayed increasing from blue to red. B) 578 
Quantile-quantile plots of all -log transformed p-values are plotted against their expected rank, 579 
with the horizontal line in each panel indicating the trait-specific multiple testing correction 580 
significance threshold. 581 
 582 

NemaScan p-values (the collection of top associations from either the LMM-EXACT-INBRED or 583 

the LMM-EXACT-LOCO algorithm for each marker) exhibited varying levels of inflation relative 584 

to both the EMMA mappings and to expected p-values for each trait (Figure 5B). Although the 585 

relative inflation of arsenic resistance, etoposide resistance, and telomere length association 586 
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mapping statistics were relatively similar, mappings of abamectin resistance and dauer 587 

pheromone responses were quite different. This difference can be ascribed in part to the fact 588 

that mapping statistics derived from NemaScan are the maximum between two matrix 589 

construction options and that, when we compared each set of algorithm-specific raw p-values to 590 

their expected quantiles, one of the algorithms often displayed less inflation. However, in some 591 

cases, like abamectin resistance, the algorithm producing lower p-values failed to detect any 592 

significant QTL (Supplemental Figure 6), indicating that the flexibility of algorithm choice in 593 

NemaScan mappings could be a source of strength when population structure of phenotypes 594 

interacts with trait heritability to have an outsized influence on QTL detection. 595 

  596 
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DISCUSSION 597 

GWA mapping as a tool for QTL discovery in C. elegans  598 

The C. elegans community has contributed steadily to the catalog of species-wide 599 

genetic variation. As the number of genetically characterized unique strains expands the 600 

CeNDR collection, we learn more about genomic patterns of diversity all over the world. The 601 

prospects for using GWA mapping to dissect the genetic underpinnings of complex traits have 602 

improved in tandem. Although the community has successfully employed GWA mappings in C. 603 

elegans to discover novel genes related to a variety of traits, we lack a robust characterization 604 

of the power and precision with which this resource is equipped to detect QTL. Evaluating 605 

population-based genetic resources for other systems using simulations has provided key 606 

benchmarks for their respective communities (Kover et al. 2009; Bennett et al. 2010; King et al. 607 

2012a; b; Bouchet et al. 2017; Noble et al. 2017; Gage et al. 2018; Keele et al. 2019). The 608 

burgeoning C. elegans quantitative genetics community has applied GWA mapping to a growing 609 

collection of wild strains and identified genetic variants linked to complex traits with novel 610 

biomedical and evolutionary implications. In the simulations presented here, we systematically 611 

tested a robust framework for GWA against a variety of genetic architectures and sample 612 

populations to contextualize past, present, and future studies using CeNDR. However, some 613 

important limitations of our simulation framework have implications in real populations. First, 614 

simulated causal variants were selected from the minor allele frequency and LD-filtered variant 615 

set, meaning that all QTL are perfectly tagged and at greater than 5% frequency in the 616 

population, upwardly biasing their detection in simulations. In practice, GWAS may 617 

underestimate the effects of rare QTVs imperfectly tagged by filtered variants or fail to detect 618 

these variants altogether. Future work should prioritize rare variant detection, especially given 619 

their implied frequency in divergent populations (Figure 3C). Second, effects assigned to 620 

simulated causal variants were drawn from a Gamma (k = 0.4, θ = 1.66) distribution 621 

(Supplementary Figure 3) creating genetic architectures heavily biased against detection of 622 
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causal alleles with very small effects. In practice, traits supported by fewer QTL of greater effect 623 

will be more amenable to GWA mapping, even at low heritability (Figure 1C). In spite of these 624 

limitations, we hope to provide the community with a flexible platform for QTL detection and 625 

simulation-based performance evaluation.  626 

Similar to multiparent mapping populations in other systems, we confirmed that the 627 

prospects of identifying QTL that explain a less than substantial proportion (~10%) of overall 628 

trait variance depend primarily on three factors: (1) the number of strains being phenotyped, (2) 629 

the precision with which phenotypes can be measured, and (3) the composition of the mapping 630 

population. For instance, we observed that measuring only 100 wild isolates is expected to 631 

provide almost 80% power to detect QTL that explain greater than 40% of the phenotypic 632 

variance. For many traits, it is no small feat to measure 100 strains with sufficient replication for 633 

line means to robustly represent that genetic background in a GWA mapping population. A 634 

recent GWA analysis of sperm size among 96 wild strains and N2 revealed no significant 635 

associations despite the nomination of the candidate gene nurf-1 using segregating mutations 636 

between the N2 and LSJ lineages (Gimond et al. 2019). Another recent GWA analysis of 637 

starvation resistance using population RAD-seq read abundance in a 96 strain co-culture 638 

revealed a single large-effect QTL on chromosome III whose effect was validated using near-639 

isogenic lines and was present in 11% of wild strains (Webster et al. 2019). These applications 640 

of GWA mappings represent mixed outcomes, providing some practical support for the 641 

conclusions of our simulations – lower sampling depths are not expected to capture entire 642 

genetic architectures, including small-effect loci or impactful alleles that segregate at low 643 

frequency (less than 5% of the population). Larger sample sizes (300-500 strains) and 644 

potentially less experimentally strenuous trait measurements are optimal for identifying loci that 645 

confer more modest effects (roughly 5-10% of the phenotypic variance) with greater likelihoods. 646 

Traits that can be measured in high-throughput (Hahnel et al. 2018; Evans et al. 2021a) or as 647 

intermediate traits (e.g., mRNA abundances) lend themselves to dissection in hundreds of 648 
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strains and QTL conferring more subtle effects can be more easily resolved. At the current size 649 

of CeNDR, the primary driver of sampling depth of GWA mapping populations should be the 650 

balance between phenotyping effort for the trait of interest and the end goal of association 651 

mapping given the roughly estimated heritability of the trait (Figure 2) and the lower bound of 652 

the effect of QTL that will be detected (Figure 3). In many cases, evaluating the same trait using 653 

linkage mapping in complementary populations (i.e., traits segregate similarly between parental 654 

strains of the cross and in the association mapping population) can validate effect sizes and 655 

provide additional support for candidates from GWA (Zdraljevic et al. 2019; Webster et al. 2019; 656 

Evans et al. 2021a). 657 

 658 

Population structure is a major determinant of performance 659 

In this study, we also quantified the impact of mapping population structure on the power 660 

and precision of GWA mapping. In comparing mappings derived from (1) choosing strains from 661 

CeNDR at random, (2) swept strains, and (3) divergent strains of equal sampling depth, we 662 

confirmed that the most power to map QTL was provided by sampling swept strains (Figure 663 

3A). We also found from these comparisons that the empirical FDR among the divergent strain 664 

mappings was significantly higher than the swept strain mappings when a single QTL was 665 

simulated (Figure 4A). This result aligns with outcomes of past GWA analyses in model 666 

organisms, wherein mappings among structured populations provided less specific inference of 667 

genetic architectures (Kang et al. 2008). C. elegans populations also harbor highly variable 668 

patterns of genetic variation across the genome in these distinct populations, which contribute 669 

to subtle differences in local performance and inference of associations (Figure 4A). However, 670 

we chose only one collection of strains to represent both divergent and swept mapping 671 

populations when considering local performance differences, which limits the general 672 

extensibility of these particular benchmarks in other populations. As different combinations of 673 

strains with varying landscapes of selective sweeps and hyperdivergent regions are tested, we 674 
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will learn more about the relative influences of these regions on performance. Before concluding 675 

that an experimenter’s particular mapping population will be less powerful because it contains 676 

many divergent strains, one is advised to perform their own population-specific simulations. 677 

Below, we outline some limitations to pursuing GWA in only swept strains in certain contexts. 678 

First, trait heritability is a major driver of detection power, which means that if the 679 

phenotype of interest does not vary significantly among swept strains, the prospects for 680 

mapping its genetic architecture heavily rely on low experimental noise. Divergent strains have 681 

been shown to exhibit distinct population-wide phenotypic differences from swept strains (Zhang 682 

et al. 2021) and therefore might be expected to contribute significantly to estimates of narrow-683 

sense heritability of other traits. Second, swept populations will be enriched for alleles that have 684 

arisen relatively recently on swept haplotypes. Some QTL will be slightly more common in the 685 

population in swept populations (Figure 3C), but swept populations provide a limited view of 686 

whether these QTL identified are meaningful in divergent populations that are more 687 

representative of the ancestral niche of C. elegans (Lee et al. 2019, 2021; Crombie et al. 2019). 688 

We know of many examples where strains more closely associated with human colonization 689 

and laboratory domestication express trait differences uncharacteristic of “wild” C. elegans 690 

isolates (Sterken et al. 2015; Schulenburg and Félix 2017). Third, one kinship matrix 691 

construction algorithm used in our GWA platform was designed, in part, to collapse extremely 692 

close relatedness among inbred individuals by creating sparse genetic covariance. This 693 

calculation is expected to provide more power in swept populations than divergent populations 694 

because the covariance among swept strains will be small enough for the algorithm to collapse 695 

more often than among divergent strains. 696 

A helpful comparison for the prospects of C. elegans GWAS is the successes of 697 

identifying disease risk alleles in human populations. Trans-ethnic GWAS has successfully 698 

identified common variants linked to complex human diseases by leveraging rich data and 699 

population sizes (Wojcik et al. 2019; Pendergrass et al. 2019; Hu et al. 2021). However, 700 
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generalized predictions of disease risk in the form of polygenic risk scores suffer from sampling 701 

bias, genetic heterogeneity, and varying frequencies of risk alleles among distinct 702 

subpopulations (Li and Keating 2014; Márquez-Luna et al. 2017; Martin et al. 2019, 2020). As 703 

the community sampling of diverse C. elegans strains grows, GWAS will provide more power to 704 

detect QTL with more modest effects, and we will achieve more success in identifying common 705 

genetic variants linked to complex traits. However, one advantage of C. elegans is that 706 

complementary techniques for quantitative genetics are easily achievable and essential for 707 

validating candidate loci from GWA mappings. Near-isogenic lines (NILs) and recombinant 708 

inbred lines (RILs) can be derived from individual strains with large phenotypic contrasts and 709 

used for fine mapping alleles, making hypothesis-driven inferences of GWA candidate gene 710 

identification and functional tests more addressable than could be hoped for in many other 711 

species. As genomic resources for comparative evolutionary studies in C. elegans grow, we will 712 

characterize hyperdivergent regions more completely so that variants identified in GWA within 713 

these regions can be more confidently nominated as candidates. Furthermore, future endeavors 714 

of GWA mapping should explicitly control for the extensive population structure present among 715 

divergent strains using statistical techniques being actively applied to significantly larger cohorts 716 

of stratified human populations (Wojcik et al. 2019). 717 
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Supplemental Figures 725 

 726 

Supplemental Figure 1: Effect size distribution of simulations comparing algorithm performance 727 
 728 
  729 
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Supplemental Figure 2: Power and false discovery rate of GWA mapping across various 730 
algorithms731 
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Supplemental Figure 3: Distributions of simulated QTL effects expressed as the fraction of 732 
phenotypic variance explained. Horizontal panels denote the number of simulated QTL per trait 733 
and vertical panels denote the heritability of each simulated trait.   734 
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 735 
 736 
 737 
 738 

 739 
Supplemental Figure 4: Distributions of all simulated QTL minor allele frequencies among 740 

mapping populations of increasing size 741 
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 743 
Supplemental Figure 5: Manhattan plots of previous GWA mappings and NemaScan mappings. 744 

Markers exceeding the multiple testing correction threshold are colored according to the 745 

mapped trait of interest. 746 
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748 
Supplemental Figure 6: QQ plots of raw NemaScan GWA mappings corresponding to the 749 

mapping algorithm that generated association scores for each trait, colored by whether the 750 

significance of each association exceeds the multiple testing threshold.  751 
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Sample SizePower FDR
100 0.33 Â± 0.10.61 Â± 0.25
200 0.39 Â± 0.10.48 Â± 0.27
300 0.42 Â± 0.10.41 Â± 0.27
400 0.44 Â± 0.10.32 Â± 0.25
500 0.46 Â± 0.10.27 Â± 0.24
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