
RESEARCH ARTICLE

Different structural variant prediction tools

yield considerably different results in

Caenorhabditis elegans

Kyle LesackID
1,2, Grace M. Mariene1,2, Erik C. AndersenID

3, James D. WasmuthID
1,2*

1 Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada, 2 Host-Parasite Interactions

Research Training Network, University of Calgary, Alberta, Canada, 3 Department of Molecular Biosciences,

Northwestern University, Evanston, IL, United States of America

* jwasmuth@ucalgary.ca

Abstract

The accurate characterization of structural variation is crucial for our understanding of how

large chromosomal alterations affect phenotypic differences and contribute to genome evo-

lution. Whole-genome sequencing is a popular approach for identifying structural variants,

but the accuracy of popular tools remains unclear due to the limitations of existing bench-

marks. Moreover, the performance of these tools for predicting variants in non-human

genomes is less certain, as most tools were developed and benchmarked using data from

the human genome. To evaluate the use of long-read data for the validation of short-read

structural variant calls, the agreement between predictions from a short-read ensemble

learning method and long-read tools were compared using real and simulated data from

Caenorhabditis elegans. The results obtained from simulated data indicate that the best per-

forming tool is contingent on the type and size of the variant, as well as the sequencing

depth of coverage. These results also highlight the need for reference datasets generated

from real data that can be used as ‘ground truth’ in benchmarks.

Introduction

Large alterations in chromosome structure contribute substantially to the genetic diversity

observed in natural populations and play a fundamental role in the evolution of novel genes

[1]. These changes that span large segments of the genome (e.g.,> 100 bp) are termed struc-

tural variants (SVs) and include deletions, tandem and interspersed duplications, insertions,

and inversions. SVs may be neutral, deleterious, or adaptive [2], and are known to facilitate

speciation [3]. SVs drive genome evolution using several mechanisms. For example, large het-

erozygous inversions can suppress recombination, thereby protecting locally adapted alleles

[4]. Also, copy number variation (CNV) is an important factor in genome evolution that

describes the gain or loss of genes. CNVs are associated with a wide range of phenotypic effects

due to the modulation of gene expression, including differential drug responses between indi-

viduals [5], HIV susceptibility [6], autism spectrum disorders [7], and schizophrenia [8]. Gene

duplication and subsequent diversification is a source of novel genes and functional
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diversification [9–11]. Importantly, SVs have also been proposed as a source of “missing heri-

tability” seen in genome-wide association studies [12].

Several approaches have been developed for the detection of SVs from paired-end whole-

genome sequencing (WGS) data [13, 14]. Paired-end approaches detect SVs when the orienta-

tion of a mapped read-pair is inconsistent with the reference genome or when the alignment

produces an unexpected insert size. Split-read approaches detect SVs by identifying individual

reads that span a given variant, resulting in at least two partial alignments. CNVs may be

detected using read-depth differences caused by gene loss or gain. Hybrid approaches that

combine multiple signals are employed by many tools and, recently, ensemble methods that

leverage multiple separate SV callers have been developed [15, 16].

The emergence of international ‘sequence everything’ projects [17, 18] and continual

reduction in sequencing costs will enable researchers to study the role that SV plays in the

evolution of their favourite species. Although numerous tools are available, most bench-

marks are limited to the human genome and a limited range of sequencing depths [13, 14,

19, 20]. Due to the difficulty in validating SVs, benchmarks often rely upon simulated data

or incomplete sets of experimentally validated variants [21]. Long-read support has also

been used to validate SV calls [22], but the accuracy of this method is unknown. Because

genome properties, such as repeat content, GC content, or heterozygosity, can differ signifi-

cantly between species, it is unclear how callers benchmarked on the human genome will

perform for other species. At the time of writing, most curated, whole genome, multi-popu-

lation/isolate sequence datasets are restricted to humans or microbial species. Among meta-

zoans, a notable exception is the Caenorhabditis elegans Natural Diversity Resource

(CeNDR) which houses whole genome data for 1514 isolates and 548 strains of the free liv-

ing nematode, C. elegans (August 2020) [23]. Because the C. elegans genome differs from

the human genome in several key characteristics, evaluating SV calling in C. elegans would

provide valuable points of comparison with past benchmarks. For example, although the

GC content in C. elegans (36%) [24] does not differ considerably from humans (41%) [25],

it is distributed uniformly among the chromosomes, whereas the GC content in the human

genome varies considerably depending on the location. Furthermore, C. elegans reproduces

primarily through self-fertilizing hermaphrodites, which can lead to profound genomic dif-

ferences compared to dioecious species that reproduce solely through the mating of males

and females. Notably, selfing results in increased homozygosity and reduced recombina-

tion, which have been predicted to impact transposon dynamics and the purging of deleteri-

ous alleles [26]. In terms of repeat content, the C. elegans genome contains substantially

fewer transposons (~12% of the genome) [27] and other repetitive sequences compared to

the repeat-rich human genome (~44% of the genome is derived from transposable ele-

ments) [28]. This is a key factor, as repeats are associated with structural variation [29, 30]

but are also a source of error in SV calling [14, 19, 31].

Here, the performance of SV calling in Caenorhabditis elegans was evaluated using real and

simulated data. Multiple commonly used short- and long-read SV calling tools were bench-

marked using mock genomes containing simulated variants. Real data were used to assess the

degree of overlap between individual callers and to determine if the results from an ensemble

short-read approach were comparable to those obtained by long-read callers. The benchmarks

and comparisons shown here demonstrate that SV prediction depends highly on the tool used

and that optimal tool choice for each platform depends on the type and size of SV. These

results provide valuable information for researchers studying structural variation in C. elegans
or other species with similar genome properties.
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Results

Structural variation prediction using simulated short-read data

To evaluate the performance of various short-read structural variant calling methods, SVsim

was used to create mock genomes containing simulated deletions, duplications, and inver-

sions. Two datasets were created from the C. elegans reference genome: a training dataset used

to train the FusorSV fusion model, and a testing dataset used to benchmark the performance

of each caller. Each dataset contained simulated SVs that ranged from 100bp to 280kbp.

Because FusorSV uses variable number of bins to discriminate SVs by size and type during the

training phase, 129 mock genomes were created for each dataset so that each bin contained a

total of 30 SVs, while ensuring that the total number of base pairs spanned by SVs in each

mock genome did not exceed 1% of the C. elegans reference genome. The mock genomes were

used to generate simulated Illumina reads at 5X, 15X, 30X, and 60X sequencing depth of

coverage.

The caller performance varied by variant type and depth (Table 1). For deletion calls,

DELLY had the highest F-measure scores at all sequencing depths, followed closely by Break-

Dancer. The sequencing depth had a stronger impact on the other variant callers, except for

Hydra. The accuracies for cnMOPS and CNVnator all improved considerably above 5X, while

increased false positives accounted for the decreased accuracy in Lumpy at 60X. The perfor-

mance of FusorSV was similar the best performing tools for each variant type at all depths.

No single metric completely describes the performance of each variant caller. Because the

precision, recall, and F1 scores were calculated based on the number of true positives, false

positives, and false negatives, they fail to describe the performance of each caller at the base

pair level. The Jaccard similarity score was used to describe the base pair overlap between the

predicted variants and simulated variants. Because the Jaccard score is based on the proportion

of intersecting base pairs, the metric is biased towards the performance of larger SVs. It should

be noted that the overall Jaccard scores described here are biased towards the performance for

larger variants, especially the overall values calculated using the entire range of SV sizes. The

Jaccard metric was also used to quantify the performance of each caller at 60X sequencing

depth for a range of SV size ranges. Although the impact of size on the Jaccard score would be

decreased for each range compared to overall score calculated from the entire set of predicted

SVs, the metric would remain biased towards the performance for the larger SV sizes con-

tained in each range.

Although DELLY had the highest accuracy at all depths, its Jaccard value decreased from

0.99 at 30X depth to 0.74 at 60X depth (Fig 1). This decrease was caused by a 2.56Mbp false

positive at the 60X depth. Differences between the Jaccard and F1 scores were observed for

several sizes. At 5X depth, the CNVnator F1 and Jaccard scores were 0.53 and 0.91 respectively

(S1 Table). Because CNVnator performed well at predicting larger variants, a higher Jaccard

score was obtained despite low accuracy for smaller deletion sizes. Conversely, the Hydra F1

scores ranged between 0.72 and 0.79, while its Jaccard scores ranged between 0.12 and 0.13.

The large discrepancies between the F1 score and Jaccard scores resulted from good perfor-

mance for smaller deletions but poor performance for larger sizes.

For duplication calls, DELLY had the highest F-measure scores at all depths, followed

closely by BreakDancer. The accuracies of CNVnator, Hydra, and Lumpy improved with

increased depth between 5X and 30X, while only a slight decrease was observed for Hydra at

60X depth. Increased depth decreased the cnMOPS accuracy due to higher false positive rates.

The performance of FusorSV was similar the best performing tools for each variant type at all

depths.
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The performance of cnMOPS and Hydra were both dependent on the size of the predicted

duplications. The rate of false positive duplications increased with higher sequencing depths

for cnMOPS and was biased towards smaller duplication sizes (Fig 2). All predicted duplica-

tions from Hydra were below 10 kbp, which led to a Jaccard score of 0.01 at all depths (S2

Table). At 60X depth, DELLY predicted a 2.32 Mbp false positive duplication, which resulted

in a decreased Jaccard score (0.83).

BreakDancer, DELLY, and Lumpy performed well for the prediction of inversions, as the

accuracy of each tool was at least 0.92 at all depths. The accuracy for Hydra was considerably

lower at 5X and decreased with increasing depth. The precision, recall, and F1 score for

FusorSV was similar to the best performing tools for each variant type at all depths. However,

lower Jaccard scores were observed in FusorSV (S3 Table) due to several multiple megabase

spanning false positives that were not predicted by other callers.

The performance of BreakDancer, Hydra, and DELLY were dependent on the size of the

predicted inversions (Fig 3). Both BreakDancer and DELLY performed better for higher

Table 1. Caller performance using simulated short-read data.

Deletions Duplications Inversions

Caller Depth Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

BreakDancer 5X 0.93 0.76 0.84 0.99 0.75 0.85 0.95 0.90 0.92

cnMOPS2 5X 0.83 0.32 0.46 0.61 0.74 0.67 NA NA NA

CNVnator2 5X 1.0 0.36 0.53 1.00 0.65 0.79 NA NA NA

DELLY 5X 1.0 0.85 0.92 1.00 0.87 0.93 0.96 0.94 0.95

Hydra 5X 0.93 0.66 0.78 0.36 0.26 0.30 0.98 0.28 0.43

Lumpy 5X 1.0 0.76 0.87 1.00 0.75 0.86 1.00 0.90 0.94

FusorSV1 5X 1.0 0.84 0.92 1.00 0.88 0.94 0.98 0.92 0.95

BreakDancer 15X 0.96 0.89 0.92 1.00 0.86 0.93 0.93 0.91 0.92

cnMOPS2 15X 0.86 0.62 0.72 0.35 0.79 0.48 NA NA NA

CNVnator2 15X 1.00 0.66 0.79 0.99 0.73 0.84 NA NA NA

DELLY 15X 1.00 0.96 0.98 1.00 0.92 0.96 0.94 0.95 0.95

Hydra 15X 0.89 0.71 0.79 0.56 0.28 0.37 0.40 0.02 0.04

Lumpy 15X 1.00 0.93 0.96 1.00 0.87 0.93 1.00 0.93 0.97

FusorSV1 15X 1.00 0.94 0.97 1.00 0.94 0.97 0.99 0.93 0.96

BreakDancer 30X 0.95 0.88 0.92 1.00 0.86 0.93 0.93 0.91 0.92

cnMOPS2 30X 0.73 0.78 0.76 0.20 0.82 0.32 NA NA NA

CNVnator2 30X 0.99 0.79 0.88 0.99 0.8 0.88 NA NA NA

DELLY 30X 1.00 0.97 0.98 0.99 0.93 0.96 0.94 0.96 0.95

Hydra 30X 0.85 0.71 0.77 0.77 0.27 0.40 0.27 0.02 0.04

Lumpy 30X 0.99 0.93 0.96 1.00 0.90 0.95 1.00 0.94 0.97

FusorSV1 30X 1.00 0.94 0.97 1.00 0.93 0.97 0.98 0.92 0.96

BreakDancer 60X 0.94 0.88 0.91 1.00 0.86 0.93 0.93 0.92 0.92

cnMOPS2 60X 0.48 0.86 0.62 0.11 0.88 0.20 NA NA NA

CNVnator2 60X 0.81 0.88 0.84 0.95 0.82 0.88 NA NA NA

DELLY 60X 0.98 0.97 0.98 0.99 0.93 0.96 0.93 0.95 0.94

Hydra 60X 0.79 0.67 0.72 0.77 0.26 0.38 0.21 0.01 0.03

Lumpy 60X 0.41 0.94 0.57 1.00 0.91 0.95 1.00 0.94 0.97

FusorSV1 60X 1.00 0.95 0.97 1.00 0.93 0.96 0.99 0.94 0.97

1. FusorSV used a training model trained on simulated data for the other callers.

2. Tool doesn’t predict inversions.

https://doi.org/10.1371/journal.pone.0278424.t001
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inversion sizes, while the performance of Hydra decreased with increasing size. A 4.27 Mbp

false positive in DELLY at 15X, 30X, and 60X resulted in decreased Jaccard scores.

Prediction of known structural variants in C. elegans

BC4586 is a C. elegans strain containing experimentally validated structural variants [32]. Pub-

licly available Illumina sequencing data allowed us to determine if the short-read SV callers in

Fig 1. Accuracy of predicted deletions from simulated short-read data. Results shown for 60X depth.

https://doi.org/10.1371/journal.pone.0278424.g001

Fig 2. Accuracy of predicted duplications from simulated short-read data. Results shown for 60X depth.

https://doi.org/10.1371/journal.pone.0278424.g002
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the SVE/FusorSV pipeline can resolve a 3910bp deletion (DEL-1; IV:9,853,675–9,857,585), a

552bp tandem duplication (DUP-1; IV:9,853,123–9,853,675), and a 4812bp inversion (INV-1;

IV:9,857,585–9,862,397). Only cnMOPs and CNVnator were able to resolve the deletion

(Table 2). Among the callers capable of predicting inversions, BreakDancer, DELLY, and

Hydra predicted the inversion. Each caller predicted the tandem duplication. Both Break-

Dancer and DELLY predicted multiple overlapping inversions spanning INV-1.

Structural variation prediction using simulated long-read data

Simulated PacBio DNA sequencing data was used to evaluate using long-read sequencing to

validate SV calls generated from short-read sequencing platforms. The mock genomes con-

taining simulated deletions, tandem duplications, and inversions were used to generate simu-

lated PacBio reads at 5X, 15X, 30X, 60X, and 142X depth of coverage.

Fig 3. Accuracy of predicted inversions from simulated short-read data. Results shown for 60X depth.

https://doi.org/10.1371/journal.pone.0278424.g003

Table 2. Identification of known variants in C. elegans.

Caller DEL-1 INV-1 DUP-1

BreakDancer No Yes1 Yes

cnMOPs Yes N/A2 Yes

CNVnator Yes N/A2 Yes

DELLY No Yes3 Yes

Hydra No Yes Yes

Lumpy No No Yes

FusorSV No Yes Yes

1. BreakDancer predicted two inversions spanning the INV-1 genome coordinates

2. Neither cnMOPs nor CNVnator predict inversions.

3. DELLY predicted three inversions spanning the INV-1 genome coordinates

https://doi.org/10.1371/journal.pone.0278424.t002
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The performance of each caller varied considerably by variant type and depth (Table 3). For

deletions, SVIM had a considerably higher accuracy at 5X depth (F1-score = 0.85) compared

to pbsv (F1-score = 0.53) and Sniffles (F1-score = 0.05). SVIM had the highest accuracy at 15X

(F1-score = 0.95), followed by Sniffles (F1-score = 0.92), and pbsv (F1-score = 0.57). Sniffles

had the highest accuracy at 30X depth (F1-score = 0.99), followed by SVIM (F1-score = 0.96)

and pbsv (F1-score = 0.60). SVIM had the highest accuracy at 60X (F1-score = 0.96), followed

by Sniffles (F1-score = 0.93) and pbsv (F1-score = 0.78). At 142X, SVIM had the highest accu-

racy (F1-score = 0.96), followed by pbsv (F1-score = 0.79) and Sniffles (F1-score = 0.42).

The accuracy of predicted duplications at 5X was higher for SVIM (F1-score = 0.45), com-

pared to pbsv (F1-score = 0.36) and Sniffles (F1-score = 0.03). At 15X, 30X, and 60X depth,

Sniffles had the highest accuracy (15X F1-score = 0.91; 30X F1-score = 0.98; 60X

F1-score = 0.94) compared to pbsv (15X F1-score = 0.38; 30X F1-score = 0.46; 60X

F1-score = 0.55) and SVIM (15X F1-score = 0.57; 30X F1-score = 0.61; 60X F1-score = 0.64).

SVIM had the highest accuracy at 142X (F1-score = 0.66), followed by pbsv (F1-score = 0.53),

and Sniffles (F1-score = 0.32). Both pbsv and SVIM had lower recall than precision, indicating

that missed variant calls decreased the accuracy of these callers. Lower recall also decreased the

accuracy of Sniffles at 5X, 15X, and 30X depth, while lower precision contributed more at 60X

and 142X depth.

The accuracy of predicted inversions was higher in pbsv at 5X (F1-score = 0.69), 60X

(F1-score = 0.75) and 142X depth (F1-score = 0.76). Sniffles had the highest accuracy at 15X

(F1-score = 0.98) and 30X depth (F1-score = 0.92). Lower precision in SVIM at 5X (0.46)

accounted for lower accuracy (F1-score = 0.49). At 15X, the SVIM precision and F1-scores

increased to 0.84 and 0.74, respectively. The highest SVIM precision (0.92) and accuracy

(F1-score = 0.76) was obtained at 30X. The SVIM precision decreased at 60X (0.83) and 142X

depth (0.15), which resulted in lower accuracy (60X F1-score = 0.73; 142X F1-score = 0.25). At

each depth, recall contributed more to decreased accuracy in pbsv. For Sniffles, lower recall

contributed more to lower accuracy at 5X and 15X depth, while lower precision contributed

more to lower accuracy at the higher depths.

Table 3. Performance of long-read structural variant callers on simulated data.

Deletions Duplications Inversions

Caller Depth Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

pbsv 5X 0.49 0.58 0.53 1.00 0.22 0.36 1.00 0.52 0.69

Sniffles 5X 1.00 0.03 0.05 1.00 0.02 0.03 1.00 0.23 0.38

SVIM 5X 0.86 0.84 0.85 0.79 0.32 0.45 0.46 0.54 0.49

pbsv 15X 0.41 0.91 0.57 1.00 0.23 0.38 1.00 0.59 0.75

Sniffles 15X 0.99 0.86 0.92 1.00 0.83 0.91 1.00 0.96 0.98

SVIM 15X 0.98 0.91 0.95 1.00 0.40 0.57 0.84 0.67 0.74

pbsv 30X 0.44 0.92 0.60 1.00 0.30 0.46 1.00 0.59 0.75

Sniffles 30X 0.99 0.99 0.99 1.00 0.97 0.98 0.89 0.96 0.92

SVIM 30X 0.99 0.93 0.96 1.00 0.43 0.61 0.92 0.65 0.76

pbsv 60X 0.68 0.93 0.78 1.00 0.38 0.55 1.00 0.59 0.75

Sniffles 60X 0.87 1.00 0.93 0.91 0.97 0.94 0.33 0.97 0.49

SVIM 60X 0.98 0.93 0.96 1.00 0.47 0.64 0.83 0.65 0.73

pbsv 142X 0.69 0.93 0.79 1.00 0.36 0.53 1.00 0.61 0.76

Sniffles 142X 0.27 1.00 0.42 0.19 0.97 0.32 0.09 0.95 0.16

SVIM 142X 0.97 0.94 0.96 0.97 0.50 0.66 0.15 0.65 0.25

https://doi.org/10.1371/journal.pone.0278424.t003
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Agreement in predicted structural variants for wild C. elegans strains

To evaluate the usefulness of long-read DNA sequencing data to validate structural variants

predicted from short-read technologies, we obtained data for 14 C. elegans wild strains with

both Illumina and PacBio sequencing data.

The predicted variants varied considerably between the callers (Table 4). The predicted

deletions ranged from a median of 76 per strain in SVIM to 341 in cnMOPs. Conversely,

cnMOPs only predicted a median of 5.5 duplications per strain compared to 129 in Sniffles.

The median predicted inversions per strain ranged from 8 in Lumpy to 88 in BreakDancer.

Because the exact breakpoints for the same predicted variant may differ between callers, it

is difficult to directly compare the agreement of calls generated by different tools. Therefore,

predicted variants spanning protein-coding genes were used to compare caller agreement. For

each comparison between callers, only predictions of a given SV type that spanned the exact

same set of genes were considered to be in agreement with each other. Overlapping predictions

between the long-read callers and FusorSV were compared to evaluate using long-read

sequencing data for the validation of variants predicted from short-read data.

Among the total set of predicted deletions spanning genes, 190 were shared among all long-

read callers. Of these deletions, 119 were predicted by FusorSV and 64% of the genes spanned

by deletions predicted by FusorSV were not shared by at least one long-read caller (Fig 4; S4

Table). Within the set of genes overlapping deletions predicted by SVIM, 95% were shared by

at least one other caller. The other long-read tools had higher counts of unique predictions not

found in any other caller (Assemblytics = 84%, MUM&Co = 33%, pbsv = 28%, sniffles = 45%,

SVIM = 5%). The percentage of unique genes spanned by deletions also varied among the

short-read callers (Fig 4; S5 Table) and ranged from 3% in DELLY to 80% in cnMOPS and

CNVnator.

Among the total set of predicted tandem duplications spanning genes, only 66 were shared

among all long-read callers. Of these only 52 were predicted by FusorSV (Fig 5; S6 Table). 77%

of the genes spanned by duplications predicted by FusorSV were not shared by at least one

long-read caller. Within the set of genes overlapping duplications, MUM&Co contained the

Table 4. Predicted deletions, duplications, and inversions in C. elegans.

Caller Deletions Tandem Duplications Inversions

Median

deletions per

strain

Median genes spanned

by deletions per strain

Median

duplications per

strain

Median genes spanned by

duplications per strain

Median

inversions per

strain

Median genes spanned

by inversions per strain

Long-

read tools

Assemblytics 233.5 787 25 49.5 N/A1 N/A1

MUM&Co 81 346 15.5 20 23.5 98.5

PBSV 87 185 26 61.5 29 84

Sniffles 171.5 385.5 129 393 63 206.5

SVIM 76 119.5 71 112.5 21 61.5

Short-

read tools

FusorSV 124.5 1363.5 128 1158 50 716.5

BreakDancer 101 269.5 39.5 151.5 88 673

cnMOPs 341 585.5 5.5 9.5 N/A1 N/A1

CNVnator 269 2128.5 55 901 N/A1 N/A1

DELLY 106 308 108 509.5 88 720

Hydra 120.5 167.5 79.5 117 28.5 420

Lumpy 107 340 107 551 8 36.5

1. Does not support inversions

https://doi.org/10.1371/journal.pone.0278424.t004
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fewest unique predictions (11%) followed by SVIM (14%), Assemblytics (20%), pbsv (42%),

and Sniffles (44%). The percentage of unique genes spanned by duplications also varied con-

siderably among the short-read callers (S7 Table) and ranged from 5% in DELLY to 90% in

CNVnator.

Among the total set of predicted inversions spanning genes, 59 were shared among all long-

read callers. Of these inversions, seven were predicted by FusorSV (Fig 6; S8 Table). Within

the set of genes overlapping inversions, SVIM contained the fewest unique predictions (41%)

followed by pbsv (51%), MUM&Co (60%), and Sniffles (69%). 89% of the genes spanned by

inversions predicted by FusorSV were not shared by at least one long-read caller. The percent-

age of unique genes spanned by inversions also varied considerably among the short-read call-

ers (S9 Table) and ranged from 17% in Lumpy to 47% in Hydra.

Fig 4. Caller agreement for deletions spanning protein-coding genes predicted from long-read tools and FusorSV.

Each row represents the set of genes covered by deletions for a given caller. The columns depict the intersection of

these predictions between callers. The plot is limited to the 20 largest sets.

https://doi.org/10.1371/journal.pone.0278424.g004

Fig 5. Caller agreement for tandem duplications spanning protein-coding genes predicted from long-read tools

and FusorSV. Each row represents the set of genes covered by duplications for a given caller. The columns depict the

intersection of these predictions between callers. The plot is limited to the 20 largest sets.

https://doi.org/10.1371/journal.pone.0278424.g005
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Discussion

Structural variant (SV) prediction is challenging for researchers studying non-human

genomes. Most SV prediction tools were designed with the human genome in mind, and

benchmarks on other species are lacking [13, 15, 16, 19]. Without an adequate guide for tool

selection, the accuracy of predicted SVs has a high degree of uncertainty. To benchmark accu-

racy, we used simulated data to evaluate six short-read structural variant callers included in

SVE [15], a pipeline developed to be used with FusorSV, an ensemble learning method that

leverages the strengths of each individual caller. We further used real short- and long-read

data to demonstrate the concordance or discordance between callers. We acknowledge that

our selection of prediction tools is not comprehensive—a near impossible goal—and that

other software has been released while we undertook this study.

The results for the simulated short-read data suggest that deletions and duplications may be

predicted with high confidence using BreakDancer and DELLY, and accurate inversion pre-

dictions may be obtained using BreakDancer, DELLY, and Lumpy. The FusorSV performance

typically reflected that of the best performing individual tools, but occasionally predicted large

megabase spanning false positives. WGS from the 1000 Genomes Project (1000GP) [33] may

be used to benchmark SV prediction using real data. These data provide a high-confidence

human truth set, as SVs were validated using a combination of short- and long-read WGS

data, Moleculo synthetic long-read sequencing, microarray SV detection, and targeted long-

read sequencing. Our results are in discordance with the values reported in the literature for

benchmarks generated using human data from the 1000 Genomes Project (1000GP) [15]. For

example, the accuracy of deletion calls from 1000GP data were considerably lower for Break-

Dancer (F1-score = 0.47), DELLY (F1-score = 0.54), and FusorSV (F1-score = 0.62). Our

results for duplications and inversions were substantially better than those reported for Break-

Dancer (duplication F1-score = 0.00, inversion F1-score = 0.08) DELLY (duplication

F1-score = 0.01, inversion F1-score = 0.09), and FusorSV (duplication F1-score = 0.19, inver-

sion F1-score = 0.45) based on 1000GP data. The Genome in a Bottle Consortium (GIAB)

recently published a human SV benchmarking dataset containing 12,745 sequence resolved

insertions (7,281) and deletions (5,464) [34]. These calls were generated from 19 variant calling

methods using data from short-read, long-read, linked-read, optical, and electronic genome

mapping. It should be noted that tandem duplications were categorized as insertions in these

Fig 6. Caller agreement for inversions spanning protein-coding genes predicted from long-read tools and

FusorSV. Each row represents the set of genes covered by inversions for a given caller. The columns depict the

intersection of these predictions between callers. The plot is limited to the 20 largest sets.

https://doi.org/10.1371/journal.pone.0278424.g006

PLOS ONE Evaluating SV prediction tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0278424 December 30, 2022 10 / 19

https://doi.org/10.1371/journal.pone.0278424.g006
https://doi.org/10.1371/journal.pone.0278424


data, which would lead to decreased performance in callers that discriminate between these

two variant types. These data were used to benchmark Parliament2, a consensus based method

that predicts SVs using support from multiple individual callers [16]. For the prediction of

deletions from 35X depth short-read data, Parliament2 achieved an overall F1-score of 0.82,

which included Delly (F1-score = 0.65), BreakDancer (F1-score = 0.59), Lumpy

(F1-score = 0.50), and CNVnator (F1-score = 0.11) among the set of tools used for consensus

calling. The performance of each of these tools was inferior to the performance we observed at

30X. Differences in genome properties, such as repeat content, could account in part for the

improvements seen here, but the usage of simulated data was likely a major factor. Real data

with experimentally validated variants would be valuable for identifying the underlying causes

of these differences.

For the simulated PacBio data, the performance of each caller varied considerably by vari-

ant type and depth. For deletions, SVIM had the highest accuracy at 5X (F1-score = 0.85), 15X

(F1-score = 0.95), 60X (F1-score = 0.96), and 142X depth (F1-score = 0.96), while Sniffles had

the highest accuracy at 30X depth (F1-score = 0.99). For duplications, SVIM had the highest

accuracy at 5X (F1-score = 0.45), and Sniffles had the higher accuracy at 15X (F1-score = 0.91),

30X (F1-score = 0.98), and 60X depth (F1-score = 0.94). Again, SVIM had the highest accuracy

at 142X depth (F1-score = 0.66). For inversion calls, a higher accuracy was obtained using pbsv

at 5X (F1-score = 0.69), 60X (F1-score = 0.75) and 142X depth (F1-score = 0.76). Sniffles had

the highest accuracy at 15X (F1-score = 0.98) and 30X depth (F1-score = 0.92).

It should be noted that SVIM generates a VCF file containing all candidate SV calls, includ-

ing calls of low confidence. Each prediction includes a quality score between 0 and 100 that

provides a confidence estimate. The authors recommend using a threshold between 10–15 for

higher depth datasets (e.g.,>40X) or a threshold that generates the expected number of predic-

tions. Therefore, for datasets with lower sequencing depth, the analyst may be limited to select-

ing an arbitrary cut-off when the expected number of SVs is unknown. The thresholds we used

for 5X (minimum QUAL = 2), 15X (minimum QUAL = 5), and 30X depth (minimum

QUAL = 10) were proportional to the decrease in depth compared to the high depth specified

by the SVIM authors. The performance for these cut-offs were similar to the optimum cut-off

values that were calculated post-hoc (S10–S12 Tables), with the exception of inversions pre-

dicted at 142X depth, where a higher threshold is recommended.

Deletion benchmarks were previously described for pbsv and Sniffles using data from the

Database of Genomic Variants [35] and NCBI dbVar [36] projects. The precision and recall

were quantified for different numbers of reads supporting the deletions. Precision values up to

0.91 and 0.81 were reported for pbsv and Sniffles, respectively. Lower recall values were

observed for pbsv (up to 0.45) and Sniffles (up to 0.26). By contrast, we observed lower preci-

sion but higher recall using simulated data.

Illumina and PacBio sequencing data from 14 natural C. elegans strains were analyzed to

determine the concordance between predicted SVs among both short- and long-read callers.

Low agreement was observed among all predictions generated using either Illumina or PacBio

data. Furthermore, many SV calls unique to a single caller were observed for predictions made

using either short or long-reads. It is therefore difficult to ascertain the accuracy of structural

variants described in the literature, as the considerably different results may be generated

using different tools. Nonetheless, the simulated data suggests that short-read tools, such as

DELLY, BreakDancer, and Lumpy are likely to provide more accurate SV calling across a

range of depths compared to the other short-read tools that were included in these bench-

marks. If training data are available, FusorSV may also be used, but large megabase spanning

inversions should be interpreted with caution, as several large false positives were predicted by

this tool.
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For SV prediction from long-reads, the simulated data suggested that neither pbsv, Sniffles,

nor SVIM may be used with high-confidence for the prediction of duplications or inversions

using lower depth data (e.g., 5X). Fewer generalizations can be made for higher depths. SVIM

had the best performance for the prediction of deletions at 15X depth, while the performance

of Sniffles was superior at 30X. Sniffles performed the best for the prediction of duplications

and inversions at 15X and 30X depth. At 60X depth, SVIM had the highest accuracy for dele-

tions, but Sniffles and pbsv demonstrated superior performance for duplications and inver-

sions, respectively. At 142X depth, the SVIM accuracy was considerably higher than pbsv and

Sniffles for deletions and duplications, while the accuracy of pbsv was considerably higher for

inversions. If precision is less of a concern than recall, Sniffles may be the preferable choice for

predicting duplications from long-read data.

The concordance between long-read callers is pertinent if long-read data is to be used to

validate candidate SVs called using short-read data. Although few predicted SVs were com-

mon to all long-read callers, a large majority of the predicted deletions and duplications from

SVIM were supported by at least one other caller. Therefore, SVIM might provide a more con-

servative option for validating deletions and duplications predicted from short-reads.

Although inversions predicted by SVIM had the highest support among other callers, over one

quarter of these calls were unique to SVIM. Therefore, long-read data may be less reliable for

validating inversions predicted from short-reads.

To assess the concordance between short- and long-read approaches, the agreement

between FusorSV and the long-read tools was measured. For each variant type, over three

quarters of the FusorSV predictions were not shared by any of the long-read tools. Because

higher accuracy has been reported for long-read tools in the literature, it is likely that FusorSV

generated many false positives. Low agreement was observed for many of the SVs predicted by

the individual tools used to train FusorSV despite higher accuracy observed in the simulated

data. This may reflect a limitation in using simulated data to train FusorSV, as simulated data

may bias the FusorSV models towards callers that perform poorly on real data. The low agree-

ment observed between FusorSV and the long-read approaches is consistent with the results

previously reported for CNV prediction in cattle [37]. In this study, the authors used CNVna-

tor and Sniffles to predict deletions and duplications using Illumina and PacBio sequencing

data. After filtering out probable false positives, only 18% of the CNVs predicted by CNVnator

overlapped with those predicted by Sniffles. For CNVs spanning genes, 22% of the CNVnator

calls overlapped with a Sniffles prediction.

The low agreement between different SV callers emphasizes the challenges involved in the

selection of ideal tools for SV calling. Without high quality benchmarks in non-human species,

tool choice is largely arbitrary, and the analyst will likely select a caller based on popularity.

Despite the lack of benchmarks, researchers increasingly rely upon these tools for the charac-

terization of SVs in non-human species, calling into question the reliability and reproducibility

of past research findings. Improved benchmarks will provide an important resource for the

research community.

Conclusions

It is challenging to choose the appropriate tool for the prediction of structural variants from

DNA sequencing data. Dozens of callers have been developed for calling structural variants

using short-read data, but few independent benchmarks are available. Compounding this

problem is the lack of benchmarks for non-human genomes. Here, multiple short-read and

long-read callers were compared using both real and simulated C. elegans data. The results

using simulated data showed that the performance of a given tool often varies considerably
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according to variant type and sequencing depth and that no single tool performed best for all

situations. The predictions generated from real data showed low overlap among all callers and

many predictions unique to individual tools.

Because variants predicted from short-reads depend highly on the tool used, the analyst

may choose to validate these SVs using long-read data. However, the lack of a consensus

among long-read callers suggests that using a long-read caller to generate a “truth-set” war-

rants caution. Nonetheless, most of the deletions and duplications predicted by SVIM and

MUM&Co, respectively, were shared by at least one other caller. These tools may provide a

more conservative approach for validating SV calls using long-reads. The availability of refer-

ence datasets for which the “ground truth” is known would provide valuable resources for

improving our understanding of the best approaches for SV prediction in non-human organ-

isms. Future benchmarking projects would benefit from publicly available data from strains

with precise deletions of various lengths generated using CRISPR-Cas9 methods, as well as fur-

ther lab strains with SVs validated manually using long-read technologies and PCR.

Methods

Structural variation prediction

Structural Variation Engine (SVE) and FusorSV (v0.1.3-beta) [15] were used to predict struc-

tural variants (deletions, duplications, and insertions) from real and simulated short-read

sequencing data. SVE is an SV calling pipeline that produces VCF files compatible with

FusorSV. FusorSV uses an ensemble learning approach to call structural variants using a

fusion model trained using individual callers. The six structural variant callers included in

SVE that support non-human genomes were evaluated here: BreakDancer [38], cnMOPS [39],

CNVnator [40], DELLY [41], Hydra [42], and Lumpy [22]. The default SVE and FusorSV

parameter settings were used.

Five tools were used to predict structural variants (deletions, duplications, and insertions)

from real and simulated long-read sequencing data: Assemblytics [43] (v1.2.1), MUM&Co

[44] (v2.4.2), pbsv (https://github.com/PacificBiosciences/pbsv) (v2.6.2), Sniffles [45]

(v1.0.12a), and SVIM [21] (v2.0.0). For each tool, the recommended long-read aligner and

default parameter settings were used. The genome assemblies and alignments required for

Assemblytics and MUM&Co were created in Canu [46] (v2.2) and MUMMER [47] (4.0.0rc1)

respectively. The alignments used with pbsv were created using pbmm2 (v.1.7.0). The align-

ments used by Sniffles and SVIM were created using ngmlr [45] (v.0.2.7). Low confidence pre-

dictions below the SVIM quality score threshold were discarded using a different cut-off for

each sequencing depth (5X = 2; 15X = 5; 30X = 10; 60X = 15, 142X = 15).

Custom Python (v3.7) and Bash scripts were used to select the final set of SV predictions to

benchmark based on the following criteria: minimum size > = 100 bp, and vcf file FILTER flag

= “PASS”.

Simulated data

SVsim (https://github.com/mfranberg/svsim; v. 0.1.1) was used to create mock C. elegans
genomes containing simulated structural variants (deletions, duplications, and inversions)

based on the WormBase [48] (Wbcel235; https://parasite.wormbase.org/Caenorhabditis_

elegans_prjna13758/Info/Index/) reference assembly for the N2 strain. Because FusorSV uses

the SV type and size as discriminating features to train the fusion model, the training dataset

was designed to have 30 SVs of each type for each size/type bin. A total of 129 mock genomes

with variable numbers of simulated deletions, duplications, and inversions were created rang-

ing from 100bp to 280kbp. This ensured that the total base pairs spanned by SVs in each mock
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genome did not exceed 1% of the reference genome, and that each bin was populated with a

total of 30 SVs from the entire set of mock genomes. To benchmark the individual callers, a

separate testing dataset, containing 129 mock genomes, was created with the same distribution

of SV types and sizes.

Short-read DNA sequencing of the mock genomes was simulated with the randomreads.sh

script included with BBTools (sourceforge.net/projects/bbmap; v38.79). Paired-end reads of

100bp were simulated at 5X, 15X, 30X, and 60X depths of coverage using the Illumina error

model with default settings. SimLoRD [49] (v.1.0.4) was used to simulate PacBio sequencing

data for the mock genomes. The SimLoRD PacBio sequencing runs were simulated at a depth

of 5X, 15X, 30X, 60X, and 142X (the median depth of real PacBio data used to predict SVs

using long-read tools).

Real data

Data from the Caenorhabditis elegans Natural Diversity Resource (CeNDR) [23] were used to

predict SVs in 14 C. elegans isolates collected from the wild. SV prediction using the SVE/

FusorSV pipeline was performed using the BAM files provided for the 20200815 CeNDR

release. SimuSCoP [50] (v1.0) was used to generate the simulated DNA-sequencing data that

trained the FusorSV model. DNA sequencing of the C. elegans N2 reference strain were used

to create the sequencing profiles used by SimuSCoP (SRA run = SRR3452263, SRA

run = SRR1013928, SRA run = SRR9719854). For each strain, FusorSV models trained on sim-

ulated data of similar sequencing depth and read length were used to predict variants.

BC4586, a C. elegans strain containing validated structural variants, was used to evaluate the

ability of the SVE/FusorSV pipeline in the prediction of experimentally validated structural

variants. Simulated SimuSCoP DNA sequencing data was generated using an N2 profile (SRA

run = SRR14489487) and used to train the FusorSV model. SVs for BC4586 (SRA

run = SRR14489485) were predicted using the SVE/FusorSV pipeline and used to identify the

presence of a deletion on chromosome IV (coordinates = 9853675–9857585), a tandem dupli-

cation on chromosome IV (coordinates = 9857585–9862397), and an inversion on chromo-

some IV (coordinates = 9853123–9853675).

Structural variation benchmarking and comparison

Variant calling resulted in multiple overlapping structural variants of the same type, which can

lead to inflated performance metrics, as each prediction may be counted as a true positive

when compared to the truth dataset. For overlapping SV predictions of the same type and cal-

ler, a single call was selected using the criteria described in S13 Table. When no discriminating

information was available among overlapping calls, the final SV was selected randomly.

Benchmarking using simulated data. For simulated data, each predicted variant was

classified as being either a true positive (TP) or false positive (FP) using the Bedtools intersect

command. Predictions that overlapped (minimum reciprocal overlap = 0.5) with at least one

simulated variant in the mock genome were classified as true positives (TP), and those calls

that did not were classified as false positives (FP). Simulated variants that were not predicted

were classified as false negatives (FN). These classifications were used to calculate the following

performance metrics:

Precision is the ratio of true positives (TP) to the total predicted variants, and was calculated

as follows:

Precision = TP / (TP + FP)

Recall is the ratio of true positives to the total number of simulated variants, and was calcu-

lated as follows:
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Recall = TP / (TP + FN)

The F1 score provides a measure of the prediction accuracy by taking the weighted average

of the precision and recall. The F1 score was calculated as follows:

F1 = 2 � precision � recall/ (precision + recall)

Because the precision, recall, and F1 scores were calculated using binary classifications, they

provide an incomplete picture. For each SV type, predictions meeting the minimum reciprocal

overlap threshold are classified as true positives but may include calls with imprecise break-

points or size estimates. Furthermore, no single agreed upon threshold exists for reciprocal

overlap and the cutoff value is typically chosen arbitrarily. SVs may be called as multiple sepa-

rate events that span the true variant [15], none of which meet the minimum reciprocal over-

lap requirement. If identifying genomic regions containing structural variation is of greater

importance to the analyst compared to the precision of individual calls, metrics that are calcu-

lated using presence or absence classifications may be unsuitable.

For example, true positives are not penalized for predicting breakpoints outside of the region

of the structural variant. Similarly, true positives are not penalized for predicting breakpoints

within the true breakpoints of the structural variant. Therefore, the Jaccard index was calculated

to measure the amount of overlap between the predicted variants and simulated variants.

The Jaccard index was calculated using the ratio of the number of base pairs in the intersec-

tion and union of the predicted and simulated variants:

Jaccard = (prediction variants \ simulated variants) / (prediction variants [ simulated

variants)

Because the Jaccard score is calculated using the union and intersection of base pairs in the

predicted and truth sets, it should be noted that this metric is biased towards the performance

of larger variants.

Comparisons using real data

Due to the lack of real data containing known structural variants, the sets of genes spanned by

SVs predicted by each caller were compared to evaluate the consistency between different

tools. C. elegans genome annotations obtained from WormBase [48] (release = WBPS14) were

used to identify which genes were spanned by SVs in the CeNDR data. The gene set was lim-

ited to protein-coding genes where at least 50% of the gene was covered by an SV. SVs larger

than 50 kbp were excluded due to this being the maximum size considered to be reliable in

Assemblytics. For each comparison between callers, only predictions of a given SV type that

spanned the exact same set of genes were considered to be in agreement with each other. The

agreement between callers was depicted using UpSet plots [51].
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