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ABSTRACT 

The accurate characterization of structural variation is crucial for our understanding of how large 

chromosomal alterations affect phenotypic differences and contribute to genome evolution. Whole-genome 

sequencing is a popular approach for identifying structural variants, but the accuracy of popular tools remains 

unclear due to the limitations of existing benchmarks. Moreover, the performance of these tools for predicting 

variants in non-human genomes is less certain, as most tools were developed and benchmarked using data from 

the human genome.  

To address this problem, multiple short- and long-read tools were benchmarked using real and simulated 

Caenorhabditis elegans whole-genome sequence data. To evaluate the use of long-read data for the validation of 

short-read predictions, the agreement between predictions from a short-read ensemble learning method and long-

read tools were compared. The results obtained indicate that the best performing tool is contingent on the type 

and size of the variant, as well as the sequencing depth of coverage. These results also highlight the need for 

reference datasets generated from real data that can be used as ‘ground truth’ in benchmarks. 

INTRODUCTION 

Large alterations in chromosome structure contribute substantially to the genetic diversity observed in 

natural populations and play a fundamental role in the evolution of novel genes (Kaessmann 2010). These 

changes that span large segments of the genome (e.g., > 100 bp) are termed structural variants (SVs) and include 
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deletions, tandem and interspersed duplications, insertions, and inversions. SVs may be neutral, deleterious, or 

adaptive (Hurles et al. 2008), and are known to facilitate speciation (Mérot et al. 2020). SVs drive genome 

evolution using several mechanisms. For example, large heterozygous inversions can suppress recombination, 

thereby protecting locally adapted alleles (Faria et al. 2019). Also, copy number variation (CNV) is an important 

factor in genome evolution that describes the gain or loss of genes. CNVs are associated with a wide range of 

phenotypic effects due to the modulation of gene expression, including differential drug responses between 

individuals (Santos et al. 2018), HIV susceptibility (Liu et al. 2010), autism spectrum disorders (Vicari et al. 

2019), and schizophrenia (Marshall et al. 2017). Gene duplication and subsequent diversification is a source of 

novel genes and functional diversification (Dos Santos et al. 2016; Storz et al. 2013; Marques et al. 2008). 

Importantly, SVs have also been proposed as a source of “missing heritability” seen in genome-wide association 

studies (Manolio et al. 2009). 

Several approaches have been developed for the detection of SVs from paired-end whole-genome 

sequencing (WGS) data (Kosugi et al. 2019; Ho et al. 2020). Paired-end approaches detect SVs when the 

orientation of a mapped read-pair is inconsistent with the reference genome or when the alignment produces an 

unexpected insert size. Split-read approaches detect SVs by identifying individual reads that span a given 

variant, resulting in at least two partial alignments. CNVs may be detected using read-depth differences caused 

by gene loss or gain. Hybrid approaches that combine multiple signals are employed by many tools and, recently, 

ensemble methods that leverage multiple separate SV callers have been developed (Becker et al. 2018; Zarate et 

al. 2021).  

The emergence of international ‘sequence everything’ projects (Lewin et al. 2018; Blaxter 2022) and 

continual reduction in sequencing costs enable researchers to study the role that SV plays in the evolution of 

their favourite species. Although numerous tools are available, most benchmarks are limited to the human 

genome and a limited range of sequencing depths. Due to the difficulty in validating SVs, benchmarks often rely 

upon simulated data or incomplete sets of experimentally validated variants (Heller and Vingron 2019). Long-

read support has also been used to validate SV calls (Layer et al. 2014), but the accuracy of this method is 

unknown. Because genome properties, such as repeat content or heterozygosity, can differ significantly between 

species, it is unclear how callers benchmarked on the human genome will perform for other species.  
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Here, the performance of SV calling in Caenorhabditis elegans was evaluated using real and simulated 

data. Multiple commonly used short- and long-read SV calling tools were benchmarked using mock genomes 

containing simulated variants. Real data were used to assess the degree of overlap between individual callers and 

to determine if the results from an ensemble short-read approach were comparable to those obtained by long-

read callers. The results shown here demonstrate that SV prediction depends highly on the tool used and that 

optimal tool choice for each platform depends on the type and size of SV. 

Results 

Structural Variation Prediction Using Simulated Short-Read Data 

To evaluate the performance of various short-read structural variant calling methods, mock genomes 

containing simulated deletions, duplications, and inversions were created, and used to generate simulated 

Illumina reads at 5X, 15X, 30X, and 60X sequencing depth of coverage. The caller performance varied by 

variant type and depth (Table 1). 

  Deletions Duplications Inversions 

Caller Depth Precision Recall F1-
Score 

Precision Recall F1-
Score 

Precision Recall F1-
Score 

BreakDancer 5X 0.93 0.76 0.84 0.99 0.75 0.85 0.95 0.90 0.92 

 cnMOPS2 5X 0.83 0.32 0.46 0.61 0.74 0.67 NA NA NA 

 CNVnator2 5X 1.0 0.36 0.53 1.00 0.65 0.79 NA NA NA 

 DELLY 5X 1.0 0.85 0.92 1.00 0.87 0.93 0.96 0.94 0.95 

 Hydra 5X 0.93 0.66 0.78 0.36 0.26 0.30 0.98 0.28 0.43 

 Lumpy 5X 1.0 0.76 0.87 1.00 0.75 0.86 1.00 0.90 0.94 

 FusorSV1 5X 1.0 0.84 0.92 1.00 0.88 0.94 0.98 0.92 0.95 

BreakDancer 15X 0.96 0.89 0.92 1.00 0.86 0.93 0.93 0.91 0.92 

 cnMOPS2 15X 0.86 0.62 0.72 0.35 0.79 0.48 NA NA NA 

 CNVnator2 15X 1.00 0.66 0.79 0.99 0.73 0.84 NA NA NA 

 DELLY 15X 1.00 0.96 0.98 1.00 0.92 0.96 0.94 0.95 0.95 

 Hydra 15X 0.89 0.71 0.79 0.56 0.28 0.37 0.40 0.02 0.04 
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 Lumpy 15X 1.00 0.93 0.96 1.00 0.87 0.93 1.00 0.93 0.97 

 FusorSV1 15X 1.00 0.94 0.97 1.00 0.94 0.97 0.99 0.93 0.96 

BreakDancer 30X 0.95 0.88 0.92 1.00 0.86 0.93 0.93 0.91 0.92 

 cnMOPS2 30X 0.73 0.78 0.76 0.20 0.82 0.32 NA NA NA 

 CNVnator2 30X 0.99 0.79 0.88 0.99 0.8 0.88 NA NA NA 

 DELLY 30X 1.00 0.97 0.98 0.99 0.93 0.96 0.94 0.96 0.95 

 Hydra 30X 0.85 0.71 0.77 0.77 0.27 0.40 0.27 0.02 0.04 

 Lumpy 30X 0.99 0.93 0.96 1.00 0.90 0.95 1.00 0.94 0.97 

 FusorSV1 30X 1.00 0.94 0.97 1.00 0.93 0.97 0.98 0.92 0.96 

BreakDancer 60X 0.94 0.88 0.91 1.00 0.86 0.93 0.93 0.92 0.92 

 cnMOPS2 60X 0.48 0.86 0.62 0.11 0.88 0.20 NA NA NA 

 CNVnator2 60X 0.81 0.88 0.84 0.95 0.82 0.88 NA NA NA 

 DELLY 60X 0.98 0.97 0.98 0.99 0.93 0.96 0.93 0.95 0.94 

 Hydra 60X 0.79 0.67 0.72 0.77 0.26 0.38 0.21 0.01 0.03 

 Lumpy 60X 0.41 0.94 0.57 1.00 0.91 0.95 1.00 0.94 0.97 

 FusorSV1 60X 1.00 0.95 0.97 1.00 0.93 0.96 0.99 0.94 0.97 

1. FusorSV used a training model trained on simulated data for the other callers. 

2. Tool doesn’t predict inversions. 

.   

For deletion calls, DELLY had the highest F-measure scores at all sequencing depths, followed closely 

by BreakDancer. The sequencing depth had a stronger impact on the other variant callers, except for Hydra. The 

accuracies for cnMOPS, CNVnator, and Tigra all improved considerably above 5X, while increased false 

positives accounted for the decreased accuracy in Lumpy at 60X. The performance of FusorSV was similar the 

best performing tools for each variant type at all depths. 

No single metric completely describes the performance of each variant caller. Because the precision, 

recall, and F1 scores were calculated based on the number of true positives, false positives, and false negatives, 

they fail to describe the performance of each caller at the base pair level. The Jaccard similarity score was used 

to describe the base pair overlap between the predicted variants and simulated variants. Although DELLY had 

the highest accuracy at all depths, its Jaccard value decreased from 0.99 at 30X depth to 0.74 at 60X depth 

(Figure 1). This decrease was caused by a 2.56Mbp false positive at the 60X depth. Differences between the 
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Jaccard and F1 scores can also be caused by size-dependent performance differences. At 5X depth, the 

CNVnator F1 and Jaccard scores were 0.53 and 0.91 respectively (Supplemental_Table_S1.xls). Because 

CNVnator performed well at predicting larger variants, a higher Jaccard score was obtained despite low accuracy 

for smaller deletion sizes. Conversely, the Hydra F1 scores ranged between 0.72 and 0.79, while its Jaccard 

scores ranged between 0.12 and 0.13. The large discrepancies between the F1 score and Jaccard scores resulted 

from good performance for smaller deletions but poor performance for larger sizes.  

 

 

Figure 1 – Accuracy of predicted deletions from simulated short-read data. Results shown for 60X depth. 

 

 

For duplication calls, DELLY had the highest F-measure scores at all depths, followed closely by 

BreakDancer. The accuracies of CNVnator, Hydra, and Lumpy improved with increased depth between 5X and 

30X, while only a slight decrease was observed for Hydra at 60X depth. The accuracy of Tigra was highest at 

15X and decreased with further increases in depth. Increased depth decreased the cnMOPS accuracy due to 

higher false positive rates. The performance of FusorSV was similar the best performing tools for each variant 

type at all depths. 

The performance of cnMOPS and Hydra were both dependent on the size of the predicted duplications. 

The rate of false positive duplications increased with higher sequencing depths for cnMOPS and was biased 
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towards smaller duplication sizes (Figure 2). All predicted duplications from Hydra were below 10 Kbp, which 

led to a Jaccard score of 0.01 at all depths (Supplemental_Table_S2.xls). At 60X depth, DELLY predicted a 2.32 

Mbp false positive duplication, which resulted in a decreased Jaccard score (0.83). 

 

 

Figure 2 – Accuracy of predicted duplications from simulated short-read data. Results shown for 60X depth. 

 

 

BreakDancer, DELLY, and Lumpy performed well for the prediction of inversions, as the accuracy of each 

tool was at least 0.92 at all depths. The accuracy for Hydra was considerably lower at 5X and decreased with 

increasing depth. The precision, recall, and F1 score for FusorSV was similar to the best performing tools for 

each variant type at all depths. However, lower Jaccard scores were observed in FusorSV (Supplemental_Table_ 

S3.xls) due to several multiple megabase spanning false positives that were not predicted by other callers. 

  The performance of BreakDancer, Hydra, and DELLY were dependent on the size of the predicted 

inversions (Figure 3). Both BreakDancer and DELLY performed better for higher inversions sizes, while the 

performance of Hydra decreased with increasing size. A 4.27 Mbp false positive in DELLY at 15X, 30X, and 

60X resulted in decreased Jaccard scores.  
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Figure 3 – Accuracy of predicted inversions from simulated short-read data. Results shown for 60X depth. 

 

Prediction of Known Structural Variants in C. elegans 

BC4586 is a C. elegans strain containing experimentally validated structural variants (Maroilley et al. 

2021). Publicly available Illumina sequencing data allowed us to determine if the short-read SV callers in the 

SVE/FusorSV pipeline can resolve a 3910bp deletion (DEL-1; IV:9,853,675–9,857,585), a 552bp tandem 

duplication (DUP-1; IV:9,853,123– 9,853,675), and a 4812bp inversion (INV-1; IV:9,857,585–9,862,397). Only 

cnMOPs and CNVnator were able to resolve the deletion. Among the callers capable of predicting inversions, 

BreakDancer, DELLY, and Hydra predicted the inversion. Each caller predicted the tandem duplication. Both 

BreakDancer and DELLY predicted multiple overlapping duplications spanning DUP-1. 

 

Caller DEL-1 INV-1  DUP-1 
BreakDancer No Yes Yes2 
cnMOPs Yes N/A1 Yes 
CNVnator Yes N/A1 Yes 
DELLY No Yes Yes3 
Hydra No Yes Yes 
Lumpy No No Yes 
FusorSV No Yes Yes 

1. Neither cnMOPs nor CNVnator predict inversions. 
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2. BreakDancer predicted two inversions spanning the INV-1 genome coordinates 

3. DELLY predicted three inversions spanning the INV-1 genome coordinates 

 

Structural Variation Prediction Using Simulated Long-Read Data 

Simulated PacBio DNA sequencing data was used to evaluate using long-read sequencing to validate SV 

calls generated from short-read sequencing platforms. The mock genomes containing simulated deletions, 

duplications, and inversions were used to generate simulated PacBio reads at 5X, 15X, 30X, 60X, and 142X 

depth of coverage.  

The performance of each caller varied considerably by variant type and depth (Table 2). For deletions, 

SVIM had a considerably higher accuracy at 5X depth (F1-score = 0.848) compared to pbsv (F1-score = 0.529) 

and Sniffles (F1-score = 0.052). SVIM had the highest accuracy at 15X (F1-score = 0.945), followed by Sniffles 

(F1-score = 0.918), and pbsv (F1-score = 0.566). Sniffles had the highest accuracy at 30X depth (F1-score = 

0.993), followed by SVIM (F1-score = 0.959) and pbsv (F1-score = 0.599). SVIM had the highest accuracy at 

60X (F1-score = 0.956), followed by Sniffles (F1-score = 0.929) and pbsv (F1-score = 0.781). At 142X, SVIM 

had the highest accuracy (F1-score = 0.956), followed by pbsv (F1-score = 0.793) and Sniffles (F1-score = 

0.423).  

The accuracy of predicted duplications at 5X was higher for SVIM (F1-score = 0.452), compared to 

pbsv (F1-score = 0.356) and Sniffles (F1-score = 0.033). At 15X, 30X, and 60X depth, Sniffles had the highest 

accuracy (15X F1-score = 0.909; 30X F1-score = 0.983; 60X F1-score = 0.935) compared to pbsv (15X F1-score 

= 0.378; 30X F1-score = 0.462; 60X F1-score = 0.554) and SVIM (15X F1-score = 0.571; 30X F1-score = 

0.605; 60X F1-score = 0.636). SVIM had the highest accuracy at 142X (F1-score = 0.659), followed by pbsv 

(F1-score = 0.531), and Sniffles (F1-score = 0.321). Both pbsv and SVIM had lower recall than precision, 

indicating that missed variant calls decreased the accuracy of these callers. Lower recall also decreased the 

accuracy of Sniffles at 5X, 15X, and 30X depth, while lower precision contributed more at 60X and 142X depth. 
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 The accuracy of predicted inversions was higher in pbsv at 5X (F1-score = 0.686), 60X (F1-score = 

0.745) and 142X depth (F1-score = 0.760). Sniffles had the highest accuracy at 15X (F1-score = 0.978) and 30X 

depth (F1-score = 0.923). Lower precision in SVIM at 5X (0.457) accounted for lower accuracy (F1-score = 

0.493). At 15X, the SVIM precision and F1-scores increased to 0.836 and 0.742, respectively. The highest SVIM 

precision (0.918) and accuracy (F1-score = 0.763) was obtained at 30X. The SVIM precision decreased at 60X 

(0.833) and 142X depth (0.153), which resulted in lower accuracy (60X F1-score = 0.732; 142X F1-score = 

0.248). At each depth, recall contributed more to decreased accuracy in pbsv. For Sniffles, lower recall 

contributed more to lower accuracy at 5X and 15X depth, while lower precision contributed more to lower 

accuracy at the higher depths. 

 

Table 2 – Performance of long-read structural variant callers on simulated data. 

  Deletions Duplications Inversions 

Caller Depth Precision Recall F1-
Score 

Precision Recall F1-
Score 

Precision Recall F1-
Score 

pbsv 5X 0.486 0.580 0.529 1.000 0.217 0.356 1.000 0.522 0.686 

Sniffles 5X 1.000 0.027 0.052 1.000 0.017 0.033 1.000 0.232 0.376 

SVIM 5X 0.857 0.84 0.848 0.792 0.317 0.452 0.457 0.536 0.493 

pbsv 15X 0.410 0.913 0.566 1.000 0.233 0.378 1.000 0.594 0.745 

Sniffles 15X 0.985 0.860 0.918 1.000 0.833 0.909 1.000 0.957 0.978 

SVIM 15X 0.979 0.913 0.945 1.000 0.4 0.571 0.836 0.667 0.742 

pbsv 30X 0.444 0.920 0.599 1.000 0.300 0.462 1.00 0.594 0.745 

Sniffles 30X 0.993 0.993 0.993 1.000 0.967 0.983 0.892 0.957 0.923 

SVIM 30X 0.993 0.927 0.959 1.000 0.433 0.605 0.918 0.652 0.763 

pbsv 60X 0.675 0.927 0.781 1.000 0.383 0.554 1.000 0.594 0.745 

Sniffles 60X 0.867 1.000 0.929 0.906 0.967 0.935 0.328 0.971 0.491 

SVIM 60X 0.979 0.933 0.956 1.000 0.467 0.636 0.833 0.652 0.732 

pbsv 142X 0.693 0.927 0.793 1.000 0.361 0.531 1.000 0.614 0.760 

Sniffles 142X 0.269 0.996 0.423 0.192 0.967 0.321 0.087 0.952 0.160 

SVIM 142X 0.972 0.940 0.956 0.968 0.500 0.659 0.153 0.652 0.248 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2022. ; https://doi.org/10.1101/2022.03.11.483485doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.483485
http://creativecommons.org/licenses/by-nc/4.0/


10 
 

Agreement in Predicted Structural Variants for Wild C. elegans 

strains 

To evaluate the usefulness of long-read DNA sequencing data to validate structural variants predicted 

from short-read technologies, we obtained data for 14 C. elegans wild strains with both Illumina and PacBio 

sequencing data.  

The predicted variants varied considerably between the callers (Table 3). The predicted deletions ranged 

from a median of 76 per strain in SVIM to 341 in cnMOPs. Conversely, cnMOPs only predicted a median of 5.5 

duplications per strain compared to 129 in Sniffles. The median predicted inversions per strain ranged from 8 in 

Lumpy to 88 in BreakDancer. 

Table 3 – Predicted deletions, duplications, and inversions in C. elegans 

 Caller Deletions Duplications Inversions 

  Median 
deletions per 
strain 

 

Median 
genes 
spanned by 
deletions per 
strain 

Median 
duplications 
per strain 

Median genes 
spanned by 
duplications 
per strain 

Median 
inversions per 
strain 

Median 
genes 
spanned 
by 
inversions 
per strain 

Lo
ng

-re
ad

 to
ol

s 

Assemblytics 
 

233.5 787 25 49.5 N/A1 N/A1 

MUM&Co 
 

81 346 15.5 20 23.5 98.5 

PBSV 
 

87 185 26 61.5 29 84 

Sniffles 171.5 385.5 129 393 63 206.5 
SVIM 76 119.5 71 112.5 21 61.5 

Sh
or

t-r
ea

d 
to

ol
s 

FusorSV 124.5 1363.5 128 1158 50 716.5 
BreakDancer 101 269.5 39.5 151.5 88 673 
cnMOPs 341 585.5 5.5 9.5 N/A1 N/A1 
CNVnator 269 2128.5 55 901 N/A1 N/A1 
DELLY 106 308 108 509.5 88 720 
Hydra 120.5 167.5 79.5 117 28.5 420 
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Lumpy 107 340 107 551 8 36.5 

1. Does not support inversions 

 

Because the exact breakpoints for the same predicted variant may differ between callers, it is difficult to 

directly compare the agreement of calls generated by different tools. Therefore, predicted variants spanning 

protein-coding genes were used to compare caller agreement. Overlapping predictions between the long-read 

callers and FusorSV were compared to evaluate using long-read sequencing data for the validation of variants 

predicted from short-read data.  

Among the total set of predicted deletions spanning genes, 555 were shared among all long-read callers. Of 

these deletions, 387 were predicted by FusorSV and 77% of the genes spanned by deletions predicted by 

FusorSV were not shared by at least one long-read caller (Figure 4; Supplemental_Table_S4.xls). Within the 

set of genes overlapping deletions predicted by SVIM, 97% were shared by at least one other caller. This overlap 

was considerably lower than the other long-read tools (Assemblytics = 71%, MUM&Co = 39%, pbsv = 31%, 

sniffles = 43%, and SVIM = 3%). The percentage of unique genes spanned by deletions also varied among the 

short-read callers (Supplemental_Table_S5.xls) and ranged from 3% in Lumpy to 48% in CNVnator. 
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Figure 4 – Overlap of predicted deletions from long-read tools and FusorSV. The plotted results were limited to 

the 20 largest sets. 

Among the total set of predicted duplications spanning genes, only 120 were shared among all long-read 

callers. Of these 97 were predicted by FusorSV (Figure 5; Supplemental_Table_S6.xls). 88% of the genes 

spanned by duplications predicted by FusorSV were not shared by at least one long-read caller. Within the set of 

genes overlapping duplications, MUM&Co contained the least unique predictions (4%) followed by SVIM 

(10%), Assemblytics (18%), pbsv (58%), and Sniffles (71%). The percentage of unique genes spanned by 

duplications also varied considerably among the short-read callers (Supplemental_Table_S7.xls) and ranged 

from 5% in BreakDancer to 77% in CNVnator. 
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Figure 5 – Overlap of predicted duplications from long-read tools and FusorSV. The plotted results were limited 

to the 20 largest sets. 

 

Among the total set of predicted inversions spanning genes, 224 were shared among all long-read 

callers. Of these inversions, 41 were predicted by FusorSV (Figure 6; Supplemental_Table_S8). Within the set 

of genes overlapping inversions, SVIM contained the least unique predictions (28%) followed by pbsv (49%), 

MUM&Co (63%), and Sniffles (74%). 90% of the genes spanned by inversions predicted by FusorSV were not 

shared by at least one long-read caller. The percentage of unique genes spanned by inversions also varied 

considerably among the short-read callers (Supplemental_Table_S9.xls) and ranged from 11% in Lumpy to 48% 

in Hydra. 
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Figure 6 – Overlap of predicted inversions from long-read tools and FusorSV. The plotted results were limited to 

the 20 largest sets. 

  

Discussion 

Structural variant (SV) prediction is challenging for researchers studying non-human genomes. Most SV 

prediction tools were designed for the human genome, and benchmarks on other species are lacking (Cameron et 

al. 2019; Kosugi et al. 2019; Zarate et al. 2021; Becker et al. 2018). Without an adequate guide for tool selection, 

the accuracy of predicted SVs has a high degree of uncertainty. Here, we used simulated and real data to 

benchmark six short-read structural variant callers included in the SVE (Becker et al. 2018), a pipeline  

developed to be used with FusorSV, an ensemble learning method that leverages the strengths of each individual 

caller.  

 

The results for the simulated short-read data suggest that deletions and duplications may be predicted 

with high confidence using BreakDancer and DELLY, and accurate inversion predictions may be obtained using 

BreakDancer, DELLY, and Lumpy. The FusorSV performance typically reflected that of the best performing 

individual tools, but occasionally predicted large megabase spanning false positives. WGS from the 1000 
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Genomes Project (1000GP) (Sudmant et al. 2015) may be used to benchmark SV prediction using real data. 

These data provide a high-confidence human truth set, as SVs were validated using a combination of short- and 

long-read WGS data, Moleculo synthetic long-read sequencing, microarray SV detection, and targeted long-read 

sequencing. Our results are in discordance with the values reported in the literature for benchmarks generated 

using human data from the 1000 Genomes Project (1000GP) (Becker et al. 2018). For example, the accuracy of 

deletion calls from 1000GP data were considerably lower for BreakDancer (F1-score = 0.47), DELLY (F1-score 

= 0.54), and FusorSV (F1-score = 0.62).  Our results for duplications and inversions were substantially better 

than those reported for BreakDancer (duplication F1-score = 0.00, inversion F1-score = 0.08) DELLY 

(duplication F1-score = 0.01, inversion F1-score = 0.09), and FusorSV (duplication F1-score = 0.19, inversion 

F1-score = 0.45) based on 1000GP data. Differences in genome properties, such as repeat content, could account 

in part for the improvements seen here, but the usage of simulated data was likely a major factor. 

 

For the simulated PacBio data, the performance of each caller varied considerably by variant type and 

depth. For deletions, SVIM had the highest accuracy at 5X (F1-score = 0.848), 15X (F1-score = 0.945), 60X 

(F1-score = 0.956), and 142X depth (F1-score = 0.956), while Sniffles had the highest accuracy at 30X depth 

(F1-score = 0.993). For duplications, SVIM had the highest accuracy at 5X (F1-score = 0.452), and Sniffles had 

the higher accuracy at 15X (F1-score = 0.909), 30X (F1-score = 0.983), and 60X depth (F1-score = 0.935). 

Again, SVIM had the highest accuracy at 142X depth (F1-score = 0.659).  For inversion calls, a higher accuracy 

was obtained using pbsv at 5X (F1-score = 0.686), 60X (F1-score = 0.745) and 142X depth (F1-score = 0.760). 

Sniffles had the highest accuracy at 15X (F1-score = 0.978) and 30X depth (F1-score = 0.923).  

 

It should be noted that SVIM generates a VCF file containing all candidate SV calls, including calls of low 

confidence. Each prediction includes a quality score between 0 and 100 that provides a confidence estimate. The 

authors recommend using a threshold between 10-15 for higher depth datasets (e.g., >40X) or a threshold that 

generates the expected number of predictions. Therefore, for datasets with lower sequencing depth, the analyst 

may be limited to selecting an arbitrary cut-off when the expected number of SVs is unknown. The thresholds 

we used for 5X (minimum QUAL = 2), 15X (minimum QUAL = 5), and 30X depth (minimum QUAL = 10) 
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were proportional to the decrease in depth compared to the high depth specified by the SVIM authors. The 

performance for these cut-offs were similar to the optimum cut-off values that were calculated post-

hoc(Supplemental_Table_ S10.xls, Supplemental_Table_S11.xls, Supplemental_Table_S12.xls), with the 

exception of inversions predicted at 142X depth, where a higher threshold is recommended.  

Deletion benchmarks were previously described pbsv and Sniffles using data from the Database of 

Genomic Variants (MacDonald et al. 2014) and NCBI dbVar (MacDonald et al. 2014) projects. The precision 

and recall were quantified for different numbers of reads supporting the deletions. Precision values up to 0.91 

and 0.81 were reported for pbsv and Sniffles, respectively. Lower recall values were observed for pbsv (up to 

0.45) and Sniffles (up to 0.26). By contrast, we observed lower precision but higher recall using simulated data. 

 

Illumina and PacBio sequencing data from 14 natural C. elegans strains were analyzed to determine the 

concordance between predicted SVs among both short- and long-read callers. Low agreement was observed 

among all predictions generated using either Illumina or PacBio data. Furthermore, many SV calls unique to a 

single caller were observed for predictions made using either short or long-reads. It is therefore difficult to 

ascertain the accuracy of structural variants described in the literature, as the considerably different results may 

be generated using different tools. Nonetheless, the simulated data suggests that short-read tools, such as 

DELLY, BreakDancer, and Lumpy are likely to provide more accurate SV calling across a range of depths 

compared to the other short-read tools that were included in these benchmarks. If training data are available, 

FusorSV may also be used, but large megabase spanning inversions should be interpreted with caution, as 

several large false positives were predicted by this tool. For SV prediction from long-reads, the simulated data 

suggested that neither pbsv, Sniffles, nor SVIM may be used with high-confidence for  the prediction of 

duplications or inversions using lower depth data (e.g., 5X). Fewer generalizations can be made for higher 

depths. SVIM had the best performance for the prediction of deletions at 15X depth, while the performance of 

Sniffles was superior at 30X. Sniffles performed the best for the prediction of duplications and inversions at 15X 

and 30X depth. At 60X depth, SVIM had the highest accuracy for deletions, but Sniffles and pbsv demonstrated 

superior performance for duplications and inversions, respectively. At 142X depth, the SVIM accuracy was 

considerably higher than pbsv and Sniffles for deletions and duplications, while the accuracy of pbsv was 
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considerably higher for inversions. If precision is less of a concern than recall, Sniffles may be the preferable 

choice for predicting duplications from long-read data. 

 

The concordance between long-read callers is pertinent if long-read data is to be used to validate 

candidate SVs called using short-read data. Although few predicted SVs were common to all long-read callers, a 

large majority of the predicted deletions and duplications from SVIM were supported by at least one other caller. 

Therefore, SVIM might provide a more conservative option for validating deletions and duplications predicted 

from short-reads. Although inversions predicted by SVIM had the highest support among other callers, over one 

quarter of these calls were unique to SVIM. Therefore, long-read data may be less reliable for validating 

inversions predicted from short-reads. 

 

To assess the agreement between short- and long-read approaches, the agreement between FusorSV and 

the long-read tools was measured. For each variant type, over three quarters of the FusorSV predictions were not 

shared by any of the long-read tools. Because higher accuracy has been reported for long-read tools in the 

literature, it is likely that FusorSV generate many false positives. Low agreement was observed for many of the 

SVs predicted by the individual tools used to train FusorSV despite higher accuracy observed in the simulated 

data. This may reflect a limitation in using simulated data to train FusorSV, as simulated data may bias the 

FusorSV models towards callers that perform poorly on real data.  

 

CONCLUSIONS 

It is challenging to choose the appropriate tool for the prediction of structural variants from DNA 

sequencing data. Dozens of callers have been developed for calling structural variants using short-read data, but 

few independent benchmarks are available. Compounding this problem is the lack of benchmarks for non-human 

genomes. Here, multiple short-read and long-read callers were compared using both real and simulated C. 

elegans data.  The results using simulated data showed that the performance of a given tool often varies 
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considerably according to variant type and sequencing depth and that no single tool performed best for all 

situations. The predictions generated from real data showed low overlap among all callers and many predictions 

unique to individual tools.  

Because variants predicted from short-reads depend highly on the tool used, the analyst may choose to 

validate these SVs using long-read data. However, the lack of a consensus among long-read callers suggests that 

using a long-read caller to generate a “truth-set” warrants caution. Nonetheless, most of the deletions and 

duplications predicted by SVIM and MUM&Co, respectively, were shared by at least one other caller. These 

tools may provide a more conservative approach for validating SV calls using long-reads. The availability of 

reference datasets for which the “ground truth” is known would provide valuable resources for improving our 

understanding of the best approaches for SV prediction in non-human organisms. Future benchmarking projects 

would benefit from publicly available data from strains with precise deletions of various lengths generated using 

CRISPR-Cas9 methods, as well as further lab strains with SVs validated manually using long-read technologies 

and PCR. 

 

METHODS 

STRUCTURAL VARIATION PREDICTION 

Structural Variation Engine (SVE) and FusorSV (v0.1.3-beta) (Becker et al. 2018) were used to predict 

structural variants (deletions, duplications, and insertions) from real and simulated short-read sequencing data. 

SVE is an SV calling pipeline that produces VCF files compatible with FusorSV. FusorSV uses an ensemble 

learning approach to call structural variants using a fusion model trained using individual callers. The six 

structural variant callers included in SVE that support non-human genomes were evaluated here: BreakDancer 

(Fan et al. 2014), cnMOPS (Klambauer et al. 2012), CNVnator (Abyzov et al. 2011), DELLY (Rausch et al. 

2012), Hydra (Lindberg et al. 2015), and Lumpy (Layer et al. 2014). The default SVE and FusorSV parameter 

settings were used.  
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Five tools were used to predict structural variants (deletions, duplications, and insertions) from real and 

simulated long-read sequencing data: Assemblytics (Nattestad and Schatz 2016) (v1.2.1),  MUM&Co (Nattestad 

and Schatz 2016) (v2.4.2), pbsv (Pacific Biosciences) (v2.6.2), Sniffles (Sedlazeck et al. 2018) (v1.0.12a), and 

SVIM (Heller and Vingron 2019) (v2.0.0). For each tool, the recommended long-read aligner and default 

parameter settings were used. The genome assemblies and alignments required for Assemblytics and MUM&Co 

were created in Canu (Koren et al. 2017) (v2.2) and MUMMER (Marçais et al. 2018) (4.0.0rc1) respectively. 

The alignments used with pbsv were created using pbmm2 (v.1.7.0). The alignments used by Sniffles and SVIM 

were created using ngmlr (Sedlazeck et al. 2018) (v.0.2.7). Low confidence predictions below the SVIM quality 

score threshold were discarded using a different cut-off for each sequencing depth (5X = 2; 15X = 5; 30X = 10; 

60X = 15, 142X = 15). 

Custom Python (v3.7) and Bash scripts were used to select the final set of SV predictions to benchmark 

based on the following criteria: minimum size >= 100 bp, and vcf file FILTER flag = “PASS”. 

SIMULATED DATA 

Svsim (v. 0.1.1) was used to create mock C. elegans genomes containing simulated structural variants 

(deletions, duplications, and inversions) based on the WormBase (Harris et al. 2004) (WBcel235; 

https://parasite.wormbase.org/Caenorhabditis_elegans_prjna13758/Info/Index/) reference assembly for the N2 

strain. Because FusorSV uses the SV type and size as discriminating features to train the fusion model, training 

datasets with variable numbers of simulated deletions, duplications, and inversions were created ranging from 

200 bp to 280 Kbp. 43 mock genomes were created for the small training dataset and included a total of 10 

structural variants of each type per size bin used by FusorSV. The medium training dataset included 86 mock 

genomes with a total of 20 variants of each type per size bin, and the large training dataset included 129 mock 

genomes with 30 variants of each type per size bin. A testing dataset was created that included 129 mock 

genomes with 30 variants of each type per size bin.  

Short-read DNA sequencing of the mock genomes was simulated with the randomreads.sh script 

included with BBTools (38.79). Paired-end reads of 100bp were simulated at 5X, 15X, 30X, and 60X depths of 
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coverage using the Illumina error model with default settings. SimLoRD (v.1.0.4) was used to simulate PacBio 

sequencing data for the mock genomes. The SimLoRD PacBio sequencing runs were simulated at a depth of 5X, 

15X, 30X, 60X, and 142X (the median depth of real PacBio data used to predict SVs using long-read tools). The 

SVIM quality score cut-off was 1 for 5X, 5 for 15X and 30X, 10 for 60X, and 15 for 142X. 

 

REAL DATA 

Data from the Caenorhabditis elegans Natural Diversity Resource (CeNDR) (Cook et al. 2017) were 

used to predict SVs in 14 C. elegans isolates collected from the wild. SV prediction using the SVE/FusorSV 

pipeline was performed using the BAM files provided for the 20200815 CeNDR release. SimuSCoP (v1.0) was 

used to generate the simulated DNA-sequencing data that trained the FusorSV model. DNA sequencing of the C. 

elegans N2 reference strain were used to create the sequencing profiles used by SimuSCoP (SRA run = 

SRR3452263, SRA run = SRR1013928, SRA run = SRR9719854). For each strain, FusorSV models trained on 

simulated data of similar sequencing depth and read length were used to predict variants.  

BC4586, a C. elegans strain containing validated structural variants, was used to evaluate the ability of 

the SVE/FusorSV pipeline in the prediction of experimentally validated structural variants. Simulated SimuSCoP 

DNA sequencing data was generated using an N2 profile (SRA run = SRR14489487) and used to train the 

FusorSV model. SVs for BC4586 (SRA run = SRR14489485) were predicted using the SVE/FusorSV pipeline 

and used to identify the presence of a deletion on chromosome IV (coordinates = 9853675-9857585), a tandem 

duplication on chromosome IV (coordinates = 9857585-9862397), and an inversion on chromosome IV 

(coordinates = 9853123-9853675). 

STRUCTURAL VARIATION BENCHMARKING 

Variant calling resulted in multiple overlapping structural variants of the same type, which can lead to 

inflated performance metrics, as each prediction may be counted as a true positive when compared to the truth 

dataset. For overlapping SV predictions of the same type and caller, a single call was selected using the criteria 
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described in Supplemental_Table_S13.xls. When no discriminating information was available among 

overlapping calls, the final SV was selected randomly. 

BENCHMARKING USING SIMULATED DATA 

For simulated data, each predicted variant was classified as being either a true positive (TP) or false 

positive (FP) using the Bedtools intersect command. Predictions that overlapped (minimum reciprocal overlap = 

0.5) with at least one simulated variant in the mock genome were classified as true positives (TP), and those calls 

that did not were classified as false positives (FP). Simulated variants that were not predicted were classified as 

false negatives (FN). These classifications were used to calculate the following performance metrics: 

Precision is the ratio of true positives (TP) to the total predicted variants, and was calculated as follows: 

 Precision = TP / TP + FP 

Recall is the ration of true positives to the total number of simulated variants, and was calculated as follows: 

 Recall = TP / TP + FN 

The F1 score provides a measure of the prediction accuracy by taking the weighted average of the precision and 

recall. The F1 score was calculated as follows: 

 F1 = 2 * precision * recall/ (precision + recall) 

Because the precision, recall, and F1 scores were calculated using binary classifications, they may lead 

to misleading benchmarks. For example, true positives are not penalized for predicting breakpoints outside of the 

region of the structural variant. Similarly, true positives are not penalized for predicting breakpoints within the 

true breakpoints of the structural variant. Therefore, the Jaccard index was calculated to measure the amount of 

overlap between the predicted variants and simulated variants.  

The Jaccard index was calculated using the ratio of the number of base pairs in the intersection and 

union of the predicted and simulated variants: 

 Jaccard = prediction variants ∩ simulated variants / prediction variants ∪ simulated variants   
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BENCHMARKING USING REAL DATA 

The agreement between different short-read and long-read SV calling approaches were assessed for the 

CeNDR data due to the lack of a truth set for these strains. C. elegans genome annotations obtained from 

WormBase (Harris et al. 2004) (release = WBPS14) were used to identify which genes were spanned by SVs. 

SVs larger than 50 Kbp were excluded due to this being the maximum size considered to be reliable in 

Assemblytics.  
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Custom Python (v3.7) and Bash scripts are available at https://github.com/kyleLesack/sv_calling_benchmarking. 
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