1	Interactions of <i>C. elegans</i> β -tubulins with the microtubule inhibitor albendazole
2	
3	
4	Linda M. Pallotto [*] , Clayton M. Dilks ^{†,‡} , Ye-Jean Park [*] , Ryan B. Smit [*] , Brian Lu [*] ,
5	Chandrasekhar Gopalakrishnan [*] , John S. Gilleard [§] , Erik C. Andersen ^{†,**} , and Paul E. Mains ^{*,**}
6	
7	
8	* Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta
9	T2N 4N1, Canada
10	[†] Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
11	[‡] Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208,
12	USA
13	[§] Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions
14	(HPI) Program, Faculty of Veterinary Medicine, University of Calgary, Alberta, T2N 4N1
15	Canada
16	** Corresponding authors:
17	mains@ucalgary.ca
18	erik.andersen@gmail.com
19	
20	Keyword: benzimidazole, albendazole, C. elegans, drug resistance, tubulin, microtubules
21	Running title: Albendazole resistance in <i>C. elegans</i>

22 ABSTRACT

23 Parasitic nematodes are major human and agricultural pests, and benzimidazoles are amongst the 24 most important broad spectrum anthelmintic drug class used for their control. Benzimidazole 25 resistance is now widespread in many species of parasitic nematodes in livestock globally and an 26 emerging concern for the sustainable control of human soil transmitted helminths. β-tubulin is 27 the major benzimidazole target, although other genes may influence resistance. Among the six C. 28 *elegans* β -tubulin genes, loss of *ben-1* causes resistance without other apparent defects. Here, we 29 explored the genetics of C. elegans β -tubulin genes in relation to the response to the 30 benzimidazole derivative albendazole. The most highly expressed β -tubulin isotypes, encoded by 31 *tbb-1* and *tbb-2*, were known to be redundant with each other for viability, and their products are 32 predicted not to bind benzimidazoles. We found that *tbb-2* mutants, and to a lesser extent *tbb-1* 33 mutants, were hypersensitive to albendazole. The double mutant *tbb-2 ben-1* is uncoordinated 34 and dumpy, resembling the wild type exposed to albendazole, but the *tbb-1 ben-1* double mutant 35 did not show the same phenotype. These results suggest that *tbb-2* is a modifier of ABZ 36 sensitivity. To better understand how BEN-1 mutates to cause benzimidazole resistance, we 37 isolated mutants resistant to albendazole and found that 15 of 16 mutations occurred in *ben-1*. 38 Mutations ranged from likely nulls to hypomorphs, and several corresponded to residues that 39 cause resistance in other organisms. Null alleles of *ben-1* are albendazole-resistant and BEN-1 40 shows high sequence identity with tubulins from other organisms, suggesting that many amino 41 acid changes could cause resistance. However, our results suggest that missense mutations 42 conferring resistance are not evenly distributed across all possible conserved sites.

43

- 44 Independent of their roles in benzimidazole resistance, *tbb-1* and *tbb-2* may have specialized
- 45 functions as null mutants of *tbb-1* or *tbb-2* were cold or heat sensitive, respectively.

46

47 INTRODUCTION

48	Parasitic nematodes are among the most common human pathogens and infect almost two billion
49	people (WORLD HEALTH ORGANIZATION 2015). Mass drug administration programs primarily
50	use the benzimidazole (BZ) anthelmintic drug class to control infections and billions of doses
51	have been dispensed, mainly to children (BECKER et al. 2018). Unfortunately, previous use in
52	livestock led to the evolution of resistance, which is now globally widespread for multiple
53	parasitic nematode species of domestic animals (KOTZE AND PRICHARD 2016; ROSE VINEER et al.
54	2020). Thus, resistance in human parasitic nematodes seems inevitable and is already emerging
55	(KRUCKEN et al. 2017; SCHULZ et al. 2018; FURTADO et al. 2019b; ORR et al. 2019).
56	The complex life cycle of parasitic nematodes, including the requirement for obligate
57	hosts, makes parasites difficult to study. The free-living nematode C. elegans has been used to
58	study the BZ mode of action (SPENCE et al. 1982; STASIUK et al. 2019; DILKS et al. 2020;
59	HAHNEL et al. 2020; WIT et al. 2020; DILKS et al. 2021). In classic work, Driscoll et al. (1989)
60	screened C. elegans for mutants resistant to the BZ derivative benomyl and found that all 28
61	alleles occurred in the same gene, the β -tubulin <i>ben-1</i> . This result is consistent with the
62	observation that BZs bind the β -tubulin subunit of microtubules and block polymerization
63	(FRIEDMAN AND PLATZER 1980; LACEY AND PRICHARD 1986; LACEY AND GILL 1994; AGUAYO-
64	ORTIZ et al. 2013). Several residues are thought to be involved in BZ binding, and these residues
65	are mutated in β -tubulins of drug-resistant parasitic nematodes (KwA <i>et al.</i> 1994; KwA <i>et al.</i>
66	1995; REDMAN et al. 2015; KOTZE AND PRICHARD 2016; AVRAMENKO et al. 2019) and confer
67	strong resistance when introduced into C. elegans ben-1 using genome editing (KITCHEN et al.
68	2019; DILKS et al. 2020; DILKS et al. 2021).

69 β -tubulins are highly conserved among eukaryotes (LUDUENA 1998), and *ben-1* is one of 70 six C. elegans β -tubulins (HURD et al. 2010). The most highly and widely expressed β -tubulins 71 in C. elegans, tbb-1 and tbb-2, have the Y200 residue that is correlated with BZ resistance, but 72 ben-1 has the sensitive F200 amino acid. Although they differ in microtubule dynamics and their 73 susceptibility to microtubule-severing enzymes, *tbb-1* and *tbb-2* act redundantly with each other 74 for embryonic viability (WRIGHT AND HUNTER 2003; ELLIS et al. 2004; LU et al. 2004; HONDA et 75 al. 2017). Other C. elegans β -tubulins, including ben-1, function primarily in the nervous system 76 (HURD 2018; NISHIDA et al. 2021). 77 Complete loss of *ben-1* confers BZ resistance and has no detectable growth disadvantages 78 on or off drug under laboratory conditions (DRISCOLL et al. 1989; HAHNEL et al. 2018; DILKS et 79 al. 2020; DILKS et al. 2021). Indeed, many C. elegans wild isolates carry unique ben-1 variants 80 with no appreciable effects on fitness (HAHNEL et al. 2018). In contrast, only a few point 81 mutations appear to occur in resistant parasitic nematodes (primarily F167Y, E198A, and F200Y) 82 in the isotype-1 β -tubulin gene) although deletion of the isotype-2 β -tubulin in the small 83 ruminant parasite Haemonchus contortus has also been observed in resistant isolates (KOTZE

84 AND PRICHARD 2016; AVRAMENKO et al. 2019). The limited number of mutations and the

85 absence of clear loss-of-function mutations in the major resistance gene in parasitic nematodes,

86 which is expected to be more frequent, imply that loss-of-function mutations would cause

87 considerable fitness costs in the absence of drug (WIT et al. 2020). The reported resistant alleles

88 likely retain function but no longer bind the BZ drugs. Although C. elegans ben-1 is clearly the

- 89 major target of BZ, other currently unknown genes can modify resistance in the field both in
- 90 parasites and *C. elegans* (ZAMANIAN *et al.* 2018; FURTADO *et al.* 2019a). Mutations in the stress

91	response, BZ uptake or metabolism modify C. elegans BZ sensitivity (JONES et al. 2015;
92	FONTAINE AND CHOE 2018; MATOUSKOVA et al. 2018; STASIUK et al. 2019).
93	Here, we explore the role of <i>C. elegans ben-1</i> and resistance to the BZ derivative
94	albendazole (ABZ), particularly with respect to the major β -tubulin isotypes. We found that <i>ben</i> -
95	1 is redundant with <i>tbb-2</i> as double mutants are uncoordinated (Unc) and dumpy (Dpy) in the
96	absence of drug, phenotypes resembling wild-type animals exposed to ABZ. tbb-2 mutants are
97	more sensitive to ABZ than the wild type. Additionally, tbb-1 ben-1 double mutants showed no
98	obvious defects. These data indicate that <i>ben-1</i> and <i>tbb-2</i> are major mediators of ABZ sensitivity.
99	As only one of the previously reported <i>ben-1</i> alleles (DRISCOLL <i>et al.</i> 1989) is available, we
100	conducted a screen for ABZ resistant mutants and found that 15 out of 16 mutations occurred in
101	ben-1, consistent with ben-1 being the major target of BZs in C. elegans. Surprisingly, although
102	the BEN-1 sequence is highly conserved and protein nulls are fully resistant and viable, we
103	found that ABZ resistant missense mutations resistant to ABZ seemed to be biased toward a
104	limited number of residues.
105	
106	MATERIALS AND METHODS
107	Strains, growth conditions and ABZ treatment
108	Strains were maintained at 15° on NGM (nematode growth media) spread with the OP50 strain
109	of E. coli as the food source (BRENNER 1974). Strains are listed on Supplemental Table 1 and
110	information about genes can be found at WormBase. Hatch rates were determined for complete
111	broods of six hermaphrodites as previously described (MAINS et al. 1990). Double mutants were
112	made using standard genetic procedures, often aided by linked morphological markers, which

113 were removed before analysis.

114	Albendazole (ABZ, Sigma #A4673) was diluted to the appropriate concentration in
115	dimethyl sulfoxide (DMSO) so that 20-50 μ L could be added to 60 cm Petri dishes containing 10
116	ml of NGM. This solution was quickly spread over the entire surface, and concentrations were
117	calculated assuming uniform diffusion throughout the agar. After one day, plates were spread
118	with OP50 bacteria, which was allowed to grow for two days at room temperature before storage
119	of the plates at 4°. In other reports, ABZ in DMSO is often added to cooled molten agar, but we
120	found that this procedure often forms a precipitate. Although our effective concentration may not
121	be comparable to plates made by adding ABZ to molten agar, or to liquid culture, our results
122	were dose dependent and reproducible even after many months of plate storage.
123	For measurements of larval growth, L4 hermaphrodites were transferred to the assay
124	temperature and the next day 15-50 gravid worms were moved to fresh NGM plates without
125	drug. The plates were incubated for approximately two hours at 25°, approximately three hours
126	at 20°, or approximately seven hours at 11° to produce semi-synchronous broods (for the
127	temperature-sensitive mutations $ben-2(qt1)$, animals laid embryos at the permissive temperature
128	of 20° to bypass the temperature-sensitive period, after which they were transferred to 25°).
129	Approximately 30-70 eggs were then transferred with a platinum wire worm pick to plates with
130	or without ABZ. Hatching rates were near 100% in the presence or absence of drug. Plates were
131	incubated for the specified times, during which drug-free control animals grew to the L4 or
132	young adult stage without hatching of the next generation, which would have made it difficult to
133	identify arrested animals. Animal lengths were measured from photographs using ImageJ
134	software (SCHNEIDER et al. 2012). As we found that effects of DMSO added to NGM had no
135	detectable effects on growth in these assays (Supplemental Figure 1A), we did not include
136	DMSO in controls in these plate assays.

137 In additional to solid plate-based assays, we also performed a high-throughput 138 phenotyping assay in response to ABZ (DILKS et al. 2020; DILKS et al. 2021). In short, a small 139 piece of NGM agar with a starved population of individuals was placed on a new 6 cm NGM 140 agar (NGMA) plate at 20° (ANDERSEN et al. 2014). After two days, gravid adults from these 141 plates were spot bleached to remove contamination, and the next morning, L1 larvae were placed 142 on new 6 cm NGMA plates. These individuals were then grown for five days when a large 143 population of L4 larval individuals were present on the plates. Five L4s were then placed on new 144 6 cm NGMA plates with multiple replicate populations per strain. After four days of growth, 145 plates were bleach synchronized and the embryos were diluted to approximately one embryo per 146 μ L. 50 μ L of this diluted embryo suspension was placed into each well of a 96-well plate. After 147 these embryos hatched, these populations were then fed bacterial lysate (GARCIA-GONZALEZ et 148 al. 2017) mixed with either ABZ in 1% DMSO or 1% DMSO alone. After 48 hours of growth, 149 images of each well of animals were taken using an ImageXpress Nano (Molecular Devices, San 150 Jose, CA). Images were analyzed using the easyXpress package (NYAANGA et al. 2021), which 151 facilitates the measurement of individual nematode sizes from images and calculates summary 152 statistics for sizes of populations of nematodes.

153

154 Screen for ABZ resistance

155 Ethyl methanesulfonate (EMS, Sigma) mutagenesis of the wild-type reference strain N2

156 (HR1988) was conducted as per Brenner (1974) using 40 μ M EMS for four hours at room

157 temperature. A number of approaches and ABZ concentrations were used and screens are

summarized in Supplemental Table 2. Mutagenized animals were placed on plates without drug

and groups of 20-30 F1 gravid adults, which contain putative homozygous resistant F2 embryos,

160	were picked onto plates that ranged from 1.5 to 50 μ M ABZ at 20°. In some screens,
161	mutagenized animals were picked directly to ABZ plates and gravid F1 progeny were counted
162	after a week. Wild-type E. coli (AMA1004, which grows into thicker lawns than OP50) was
163	added to all plates after one week. The extra food allowed mutations with weaker ABZ resistance
164	more time to outgrow their non-mutant siblings. Plates were screened for movement or increased
165	growth if we saw no movement defects (the latter yielded <i>sb156</i>). Resistant worms were
166	transferred to fresh ABZ plates and only one strain, derived from a single animal, was retained
167	per selection plate. As some screens were non-clonal, strains harboring identical ben-1 DNA
168	changes were deemed duplicates (two pairs were found, <i>sb146</i> and <i>sb147</i> ; <i>sb143</i> and <i>sb159</i>).
169	Thirteen unique ben-1 mutations and one non-ben-1 mutation (sb156) were found among 9500
170	haploid genomes (Supplemental Tables 1 and 2). <i>sb144</i> was outcrossed six times, and <i>sb151</i> five
171	times, <i>sb163</i> , six times and <i>sb164</i> , one time to remove background mutations.
172	Additional screens took advantage of the tbb-2 ben-1 Unc phenotype that we report here,
173	so screens for movement on ABZ should be biased against new ben-1 alleles. HR2038 tbb-
174	2(gk129) was mutagenized as described above (Supplemental Tables 1 and 2). This screen
175	yielded two mutants among 10,100 haploid genomes in one screen and five mutants out of
176	51,560 haploid genomes in another screen (Supplemental Tables 1 and 2).
177	
178	ben-1 DNA sequencing
179	ben-1 was amplified using Phusion Taq DNA polymerase (Thermo Scientific) and sequenced in
180	four segments (Supplemental Figure 2). After amplification, DNA was extracted for Sanger

181 sequencing from the gel using Bioneer *AccuPrep*® PCR/Gel Purification Kit. All sequencing

182 was carried out at the University of Calgary Core DNA services.

1	83
---	----

184 Statistical Analysis

- 185 Statistical analyses of agar plate-based studies were calculated in <u>Prism</u> software. These worm
- 186 length data were compared to controls run on the same day using a two-tailed Mann-Whitney
- 187 Rank Sum test because most data sets failed normality tests. High-throughput assay data were
- 188 analyzed using the R statistical environment and comparisons were made using an ANOVA with
- 189 a *post hoc* Tukey HSD test. All data and scripts available on Github
- 190 (https://github.com/AndersenLab/2021_Pallotto).
- 191

Data availability statement

Strains and plasmids are available upon request. The authors affirm that all data necessary forconfirming the conclusions of the article are present within the article, figures, and tables.

195

196 **RESULTS**

197 To measure drug sensitivity, we scored larval lengths from semi-synchronized broods of 198 embryos laid over a several hour period, followed by three days of growth on plates at 20° 199 (unless otherwise stated). We found that 7.5 µM ABZ caused partial growth inhibition of the 200 wild type so most of our experiments used this dose to detect either weak resistance or increased 201 sensitivity (Supplemental Figure 1B). We also found maximal differences between control and 202 7.5 µM ABZ treatment of the wild type after three days post embryo laying (Supplemental 203 Figure 1C). We present much of our data in two parts. First, we normalize each strain to the 204 average length of the wild type run in parallel to see if mutations affect normal growth. Second, 205 to compare relative drug sensitivities among strains, we normalize each drug treated strain to that strain's average length on parallel, non-drug plates. A value of 1.0 signifies complete resistance.
This approach should be sufficient to qualitatively divide strains into three categories: resistant,
partially resistant, or sensitive. Unless otherwise stated, two-tailed Mann Whitney Rank Sum
tests are used to compare data.

210

211 *ben-1* is redundant with *tbb-2* but not *tbb-1*

212 *ben-1* null alleles display no mutant phenotype other than complete resistance to ABZ (DRISCOLL

213 et al. 1989; HAHNEL et al. 2018; DILKS et al. 2020; DILKS et al. 2021), indicating likely

214 redundancy with other *C. elegans* β-tubulin genes. Previous work has shown that the maternal

215 contributions of the major tubulin isotypes *tbb-1* and *tbb-2* are redundant with each other for

216 embryonic viability (WRIGHT AND HUNTER 2003; ELLIS et al. 2004; LU 2004). Therefore, we

217 made double mutants of *tbb-1* or *tbb-2* null alleles with the canonical *ben-1(e1880)* mutation.

218 Notably, *tbb-2 ben-1* double mutants showed an Unc Dpy phenotype in the absence of ABZ, but

219 each single mutant was wild-type. These Unc Dpy phenotypes resemble the wild-type strain

when it is exposed to BZ drugs (Figure 1A). This result was also recapitulated in length

221 measurements after three days of growth (Figure 1B). The *tbb-2* and *ben-1* single mutants were

respectively 0.91 and 0.93 the length of the wild-type controls run in parallel (Figure 1B). If the

mutations were additive, we expect the double mutant to be $0.91 \times 0.93 = 0.85$ of the wild type.

The observed average length was 0.67, indicating a mutual enhancement (p < 0.0001). A similar

effect was not seen for *tbb-1 ben-1* double mutants where the observed value was 0.80, which

was higher than the predicted expected value of 0.72. The *tbb-2 ben-1* mutant phenotype and the

227 phenocopy in the wild type after ABZ exposure suggests that TBB-2 and BEN-1 have redundant

functions in the cells that are affected by ABZ.

Figure 1

Figure 1 Genetic interactions of β -tubulin genes. Unless otherwise stated, experiments represent three days of growth at 20°. (A) Images of the effects of ABZ on strains at low and high magnification. *tbb-2* mutants may be hypersensitive to ABZ and *tbb-2 ben-1* double mutants grown in the absence of ABZ resemble the wild type exposed to drug. Scale bars = 250µm. The spots in some images are crystals that sometimes form on NGM. (B) Worm lengths, in the absence of drug were normalized to the average length of the wild type. A representative wild-type sample is shown, but values of each strain were normalized to the wild type grown in parallel. The distribution of expected lengths of the double mutants of *tbb-1* and *tbb-2* with *ben-1(e1880)* were determined by multiplying each single mutant value by the average of *ben-*I(e1880). The observed value tbb-2 ben-1 double mutant was lower than expected. The tbb-1 tbb-2 double mutant and tbb-1 tbb-2 ben-1 triple mutant strains were balanced with qC1, which includes dpy-19 so homozygotes are shorter than heterozygotes. The balanced strains segregate 25% arrested larvae, demonstrating that zygotic expression of *tbb-1* and *tbb-2* are redundant for viability. The addition of a *ben-1* mutation did not cause earlier arrest. (C) Effects of ABZ on tubulin mutants normalized to the average length of the same strains grown in parallel off drug. The *tbb-2* mutant appears more sensitive but was completely rescued (average near 1.0) by a mutation in *ben-1*. The *tbb-1* mutant showed normal sensitivity (but see Figure 2) and only showed partial rescue of the *ben-1* defect. (D) Although both *tbb-1* and *tbb-2* single mutants grew well at 20°, the *tbb-1* mutant was cold sensitive and the *tbb-2* mutant was heat sensitive. Growth was measured after eight days at 11° , three days at 20° and two days at 25° . Mean and standard deviations are indicated. Two-tailed Mann-Whitney Rank Sum test were used to calculate p-values.

229	Previous reports of redundancy between <i>tbb-1</i> and <i>tbb-2</i> were based on embryonic
230	viability after depleting maternal stores (WRIGHT AND HUNTER 2003; ELLIS et al. 2004; LU
231	2004). To determine if <i>ben-1</i> plays a role in early development, we compared the <i>tbb-1 tbb-2</i>
232	double mutant to the tbb-1 tbb-2 ben-1 triple mutant. As tbb-1 tbb-2 double mutants are zygotic
233	lethal, the double and triple mutations were maintained as balanced strains. Approximately one
234	quarter of the larval progeny of tbb-1 tbb-2/+ heterozygotes (presumably this one quarter are the
235	tbb-1 tbb-2 homozygotes) showed retarded growth, arresting once maternal stores were
236	exhausted (Figure 1B). We observed no downward shift in the fitness of the triple mutant that
237	included mutations in <i>ben-1</i> . It is possible that some of the triply mutant homozygotes failed to
238	hatch and would so be missed when scoring larval lengths in Figure 1B. However, we found
239	little to no increase in embryonic lethality in the triple mutant with ben-1: 3.1% of the embryos
240	of tbb-1 tbb-2 ben-1/+ selfed mothers failed to hatch (N=1564) comparted to 2.1% unhatched
241	embryos for <i>tbb-1 tbb-2/</i> + (N=1356). Therefore, <i>ben-1</i> has no essential role in the embryo.
242	We next asked how ABZ would affect β -tubulin mutants. The <i>ben-1(e1880)</i> (amino acid
243	change G104D) and <i>ben-1(ean65)</i> (deletion of exons 2-4) mutant strains showed near complete
244	resistance compared to growth of the mutant off drug (Figure 1C). The tbb-2 mutant strain was
245	more sensitive to ABZ than the wild type ($p < 0.0001$), consistent with the observation that the
246	tbb-2 ben-1 double mutant showed mutant phenotypes off drug. Notably, tbb-2 ben-1 grew
247	equally well on or off ABZ ($p = 0.34$). By contrast, the <i>tbb-1</i> mutant showed the same sensitivity
248	to drug as the wild type ($p = 1$, but see below). The <i>tbb-1 ben-1</i> double mutant was still partially
249	sensitive to ABZ ($p = <0.0001$).
250	

251 High-throughput measurement of the ABZ response

252	We performed a high-throughput assay that is more sensitive than plate-based assays, to test how
253	different combinations of tubulin mutations affect responses to ABZ. Populations of nematodes
254	were grown from the L1 larval stage for 48 hours in both ABZ and DMSO (control) conditions
255	to measure both the effects on ABZ responses and potential changes in normal growth
256	conditions. In control conditions, we found that $ben-1(e1880)$ mutant, the $tbb-1$ deletion allele,
257	and the double mutant grew more slowly than the wild type (Figure 2A). There was no
258	synergistic interaction of $tbb-1$ with $ben-1(e1880)$ as the double mutant grew as well as the $tbb-1$
259	single mutant ($p = 0.54$, we were unable to perform this assay with the <i>tbb-2</i> deletion allele or
260	this mutation in combination with <i>ben-1(e1880)</i> because any strains harboring the <i>tbb-2</i> were too
261	sick and slow-growing for this assay). The differences between strains in control conditions,
262	especially the strains containing <i>ben-1(e1880)</i> , were surprising because previous studies reported
263	that the <i>ben-1(e1880)</i> allele did not cause noticeable growth defects on plates (DRISCOLL <i>et al.</i>
264	1989). However, the highly sensitive assays used here detected a significant difference (P $<$
265	0.0001, Tukey-HSD). Conversely, the <i>ben-1(ean65</i>) deletion strain, which removes exons 2 to 4
266	created using targeted genome editing (HAHNEL et al. 2018; DILKS et al. 2020), showed no
267	changes in growth in this assay. This result suggests that the <i>ben-1(e1880)</i> allele likely has other
268	mutations that affect fitness or has some neomorphic growth defects that can be revealed in
269	liquid culture. In response to ABZ treatment, the <i>ben-1(e1880)</i> strain was the most resistant
270	(Figure 2). The combination of <i>ben-1(e1880</i>) and the deletion of <i>tbb-1</i> was also highly resistant
271	compared to the wild type (p < 0.0001 , Tukey-HSD). The strain with the deletion of <i>tbb-1</i> alone
272	was the most significantly ABZ-sensitive strain.
273	

274 The *tbb-1* mutant is cold-sensitive and the *tbb-2* mutant is heat sensitive

Figure 2 High-throughput analysis of β -tubulin mutant allele combinations. Strain names are shown on the x-axis with the allele shown under the box plot. Regressed median animal length of a population of animals is shown on the y-axis. Each point represents the median animal length calculated from a well containing approximately 50 animals. Data are shown as Tukey box plots with the median displayed as a horizontal line and the edges of the box representing the 25th and 75th quartiles. Whiskers are the extended 1.5 interquartile range. Tukey HSD is used to calculate significance.

275	Although <i>tbb-1</i> and <i>tbb-2</i> are redundant for viability, single mutants have different effects on
276	tubulin dynamics in the early embryo and <i>tbb-2</i> also shows reduced hatching at 25° compared to
277	tbb-1 (WRIGHT AND HUNTER 2003; ELLIS et al. 2004; LU et al. 2004; HONDA et al. 2017). We
278	examined temperature-dependent growth between the extremes of efficient C. elegans laboratory
279	growth, 11° and 25°. We found that <i>tbb-1</i> was severely compromised at 11° ($p < 0.0001$
280	compared to 20°), and <i>tbb-2</i> showed the opposite pattern at 25° ($p < 0.0001$ vs. 20°, Figure 1D).

281

282 Screens for ABZ resistance

283 Null alleles of *ben-1*, including large deletions, lead to BZ resistance (DRISCOLL *et al.* 1989;

284 CHEN et al. 2013; KATIC AND GROSHANS 2013; HAHNEL et al. 2018; DILKS et al. 2020).

285 Unfortunately, *ben-1(e1880)* is the only extant allele from Driscoll *et al.* (1989). To understand

the range of *ben-1* mutations that can cause ABZ resistance and to possibly uncover genes other

than *ben-1* that contribute to resistance, we selected for ABZ resistant mutants after mutagenesis

under a variety of conditions (Supplemental Table 2, Materials and Methods). In the first screen

289 of 9,500 haploid genomes carried out with 7.5 to 50 μ M ABZ, we identified 13 independent

290 mutants based on either movement or improved growth on drug. As discussed below, 12 had

sequence changes in *ben-1*. This result yields an aggregate forward mutation rate of 1/730 *ben-1*

292 mutations/gamete, the same frequency as found by Driscoll *et al.* (1989). This rate is higher than

the average mutation rate for *C. elegans* genes of 1/2000 following standard EMS mutagenesis

294 (BRENNER 1974; PARK AND HORVITZ 1986).

Only one mutation in the initial screen, *sb156*, lacked changes in *ben-1* (see below) and could represent an alternative target or modifier of ABZ resistance. To bias against additional mutations in *ben-1*, we carried out screens in the *tbb-2* mutant background. We reasoned that a

298 new allele of *ben-1*, although able to grow on ABZ, would be Dpy Unc as found for the *ben-1* 299 *tbb-2* double mutant strain (Figure 1A, B). Therefore, we screened for movement, rather than 300 either movement or growth as we did in the first screen. Some of the animals were screened at a 301 lower dose 1.5 μ M ABZ (the rest were screened at 7.5 μ M) because *tbb-2* mutants are more 302 sensitive to the drug than the wild type (Figure 1A, C). These screens yielded two mutations, but 303 at a much lower an aggregate rate of 1/5050 per haploid genome, indicating the screen was 304 indeed biased against frequent ben-1 alleles. However, sequencing showed that both of these 305 strains had *ben-1* mutations (see below). A third larger screen at 1.5 to 50 µM ABZ yielded five 306 mutations at the low rate of 1/10,310 per haploid genome. All double mutant strains grew better 307 than the parent *tbb-2* strain on 7.5 μ M ABZ over several generations but had only marginally 308 better movement than the parent on ABZ, especially as young larvae. These mutants have not 309 been sequenced but are likely *ben-1* alleles for several reasons. Like *ben-1 tbb-2* double mutants, 310 they are Unc Dpy off the drug. After outcrossing, crossovers separating resistance from the Unc 311 Dpy phenotypes were relatively rare, indicating linkage consistent with the 2 cM map distance 312 between *ben-1* and *tbb-2*. Therefore, although the screens in the *tbb-2* background were likely 313 biased against *ben-1* mutations, our criterion for choosing mutants with improved movement 314 may not have been sufficiently rigorous. Alternatively, non-ben-1 mutations leading to resistance 315 in the *tbb-2* background may be rare.

Several mutants had slow growth in plate assays off drug relative to the wild-type parent
strain run in parallel (Figure 3A, strains are arranged in rank order of resistance found in Figure
3B). As most strains were not outcrossed after mutagenesis (Materials and Methods,

319 Supplemental Table 2), these differences must be treated with caution. When growth of each

320 strain on ABZ was normalized to its growth in the absence of drug, mutations varied from fully

Figure 3

Figure 3 Sensitivity of mutant strains to ABZ. Strains are presented in rank order of ABZ resistance after three days of growth at 20°. (A) Growth of *ben-1* mutations relative to wild type cultured in parallel (a representative wild type is shown). (B) Growth on 7.5 μ M ABZ was normalized to the average of the same strain grown in parallel in the absence of drug shown in (A). *sb151* and *sb163* showed the least resistance. (C) Growth of the wild type and *sb156*, which does not have a lesion in the *ben-1* coding region, relative to the wild type. (D) Assays run in parallel to (C) at the indicated levels of ABZ. *sb156* shows partial resistance at the lower dose. . Two-tailed Mann-Whitney Rank Sum test were used to calculate p-values. Mean and standard deviations are indicated.

to partially resistant (Figure 3B). Although *sb156* (which lacks mutations in *ben-1*) outgrows the wild type after several generations, resistance is not seen after three days of growth at 7.5 μ M ABZ and animals are Unc Dpy. Resistance was seen in the three-day growth assay at the lower dose of 1.5 μ M (p = 0.005, Figure 3C, D).

325

326 Sequence changes in ABZ resistance mutations

327 All mutant strains from the first two screens, except *sb156*, had sequence changes in *ben-1*

328 (Figure 4, Supplemental Table 1). Among these mutants, several of the *ben-1* mutations are

329 likely nulls, including nonsense alleles (*sb152*, Q31Stop; *sb158* W344Stop; *sb154* Q375Stop) as

330 well as a splice donor mutation (*sb153*, a stop occurs after 54 intron-encoded amino acids

following amino acid 157). All other mutations are in codons that encode amino acids conserved

between BEN-1, TBB-2, *H. contortus* ISO-1 (the gene mutated in BZ resistant isolates of this

333 ruminant parasite), and β-tubulins from *Drosophila*, human, and *S. cerevisiae* (Figure 4,

334 Supplemental Figure 3 shows mutations relative to the six *C. elegans* β-tubulins). We sequenced

the canonical *e1880* (G104D) allele (DRISCOLL *et al.* 1989) and found that it occurred in the

336 same reside as *sb145* (G104S). Meanwhile, another pair of mutations also had different changes

at a shared codon, *sb144* (G142E) and *sb164* (G142R). Two mutations have changes reported in

338 other organisms: *sb159* E198K is found in BZ resistant fungi and parasitic nematodes and was

recently found to be resistant when edited into *C. elegans ben-1* (JUNG *et al.* 1992; LIU *et al.*

340 2014; MOHAMMEDSALIH et al. 2020; DILKS et al. 2021). The sb151 R241H is found in benomyl-

341 resistant S. cerevisiae mutants (THOMAS et al. 1985). EMS induces GC to AT transitions and

342 would have not induced *ben-1* mutations corresponding to the common parasite mutations

343 F167Y, E198A, and F200Y (see Discussion).

											e:	1880: D	
				sb1	52: Stop			sb163: V gk3	32957: E	<i>sb150:</i> N	S	b145: S	<i>sb146:</i> R
	-				\checkmark			\checkmark	↓	↓		\checkmark	\checkmark
BEN-1	1	MREIVHVQAG	QCGNQIGAKF	WEVISDEHGI	QPDGTYKGES	DLQLERINVY	YNEANGGKYV	PRAVLVDLEI	P GTMDSVRSGP	FGQLFRPDNF	VFGQSGAGNN	WAKGHYI	'EGA
TBB-2	Ţ	MREIVHVQAG	QCGNQIGSKF	WEVISDEHGI	QPDGTFKGET	DLQLERIDVY	YNEANNGKYV	PRAVLVDLEI	P GTMDSVRSGP	F'GQLF'RPDNF'	VF'GQSGAGNN	WAKGHY'I	'EGA
H. contortus	1	MREIVHVQAG	QCGNQIGSKF	WEVISDEHGI	QPDGTYKGES	DLQLERINVY	YNEAHGGKYV	PRAVLVDLEI	P GTMDSVRSGP	YGQLFRPDNY	VFGQSGAGNN	WAKGHYI	'EGA
Drosophila	1	MREIVHLQAG	QCGNQIGSKF	WEIISDEHGI	DPNGYYHGES	ALQHERIDVY	YNEASSGKYV	PRAVLIDLE	P GTMDSVRQSP	VGQLFRPDNF	VYGQSGAGNN	WAKGHYI	'EGA
Human	1	MREIVHIQAG	QCGNQIGAKF	WEVISDEHGI	DPSGNYVGDS	DLQLERISVY	YNEASSHKYV	PRAILVDLE	P GTMDSVRSGA	FGHLFRPDNF	IFGQSGAGNN	WAKGHYI	'EGA
S. cerevisiae	1	MREIIHISTG	QCGNQIGAAF	WETICGEHGL	DFNGTYHGHD	DIQKERLNVY	FNEASSGKWV	PRSINVDLE	GTIDAVRNSA	IGNLFRPDNY	IFGQSSAGNV	WAKGHYI	'EGA
				sb144	<i>: E, sb164</i> : R	sb153: Splie	ce			<u>sb159: K</u> , tbb-2	(qt1): K		
					\checkmark	\checkmark	_			₩ _			
BEN-1	111	ELVDNVLDVV	RKEAEGCDCL	QGFQLTHSLG	GGTGSGMGTL	LISKIREEYP	DRIMSSFSVV	PSPKVSDTV	7 EPYNATLSVH	QLVENTDETF	CIDNEALYDI	CFRTLKI	SNP
TBB-2	111	ELVDNVLDVI	RKEAEGCDCL	QGFQLTHSLG	GGTGSGMGTL	LISKIREEYP	DRIMSSFSVV	PSPKVSDTV	7 EPYNATLSVH	QLVENTDETY	CIDNEALYDI	CYRTLKI	JTNP
H. contortus	111	ELVDNVLDVV	RKEAEGCDCL	QGFQLTHSLG	GGTGSGMGTL	LISKIREEYP	DRIMASFSVV	PSPKVSDTV	V EPYNATLSVH	QLVENTDETF	CIDNEALYDI	CFRTLKI	JTNP
Drosophila	111	ELIDSVLEVL	RKESEGCDCL	QGFQLAHSLG	GGTGSGLGTL	LISKIREEYP	DRIMNSFSVV	PSPKVSEVV	7 EPYNATLSLH	QLIVDTDETF	CIDNEALYDI	CYQSLRI	CSP
Human	111	ELVDSVLDVV	RKECENCDCL	QGFQLTHSLG	GGTGSGMGTL	LISKVREEYP	DRIMNTFSVV	PSPKVSDTV	/ EPYNATLSIH	QLVENTDETY	CIDNEALYDI	CFRTLKI	ATP
S. cerevisiae	111	ELVDSVMDVI	RREAEGCDSL	OGFOITHSLG	GGTGSGMGTL	LISKIREEFP	DRMMATESVL	PSPKTSDTV	/ EPYNATLSVH	OLVEHSDETF	CIDNEALYDI	CORTLKI	JNOP
				~ ~						~		~~~	~
		sb155	5: F <u>sb</u> 1	<u>г</u> 151: Н sb152	7:F					<i>sb149:</i> Y		gk358233:	ĸ
		sb155 ↓	5: F <u>sb</u> 2	<u>151: H</u> sb152 ↓ ↓	7:F					sb149: Y ↓		gk358233: ↓	ĸ
BEN-1	221	<i>sb155</i> ↓ Tygdlnhlvs	5: F <u>sbi</u> VTMSGVTTCL	2 2 1 <u>51:H</u> sb152 ↓ ↓ RFPGQLNADL	7:F RKLAVNMVPF	PRLHFFMPGF	APLSAKGAQA	YRALTVAELT	QQMFDAKNMM	sb149: Y ↓ AACDPRHGRY	LTVAAMFRGR	gk358233: ↓ MSMREVI	K DDQM
BEN-1 TBB-2	221 221	sb155 ↓ TYGDLNHLVS TYGDLNHLVS	F <u>sbi</u> VTMSGVTTCL LTMSGVTTCL	<mark>151:H</mark> sb153 ↓↓↓ RFPGQLNADL RFPGQLNADL	7:F RKLAVNMVPF RKLAVNMVPF	PRLHFFMPGF PRLHFFMPGF	APLSAKGAQA APLSAKGTQA	YRALTVAELT YRALTVAELT	7 QQMFDAKNMM 7 QQMFDAKNMM	sb149: Y ↓ AACDPRHGRY AACDPRHGRY	LTVAAMFRGR LTVAAMFRGR	gk358233: ↓ MSMREVI MSMREVI	K DDQM DEQM
BEN-1 TBB-2 H. contortus	221 221 221	sb155 ↓ TYGDLNHLVS TYGDLNHLVS TYGDLNHLVS	F <u>sb</u> VTMSGVTTCL LTMSGVTTCL VTMSGVTTCL	<mark>151: H</mark> sb15 ↓ ↓ RFPGQLNADL RFPGQLNADL RFPGQLNADL	7:F RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF	PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF	APLSAKGAQA APLSAKGTQA APLSAKGAQA	YRALTVAELT YRALTVAELT YRASTVAELT	2 QQMFDAKNMM 2 QQMFDAKNMM 2 QQMFDAKNMM	Sb149: Y ↓ AACDPRHGRY AACDPRHGRY AACDPRHGRY	LTVAAMFRGR LTVAAMFRGR LTVAAMFRGR	gk358233: MSMREVI MSMREVI MSMREVI	K DDQM DEQM DDQM
BEN-1 TBB-2 H. contortus Drosophila	221 221 221 221	sb155 ↓ TYGDLNHLVS TYGDLNHLVS TYGDLNHLVS TYQDLNHLVS	F <u>sb</u> VTMSGVTTCL LTMSGVTTCL VTMSGVTTCL VTMSGVTTCL	151: H sb15 ↓ ↓ RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL	7:F RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF	PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF	APLSAKGAQA APLSAKGTQA APLSAKGAQA APLTAKGSQQ	YRALTVAELT YRALTVAELT YRASTVAELT YRALTVAELT	2 QQMFDAKNMM 2 QQMFDAKNMM 2 QQMFDAKNMM 3 QQMFDAKNMM	Sb149: Y ↓ AACDPRHGRY AACDPRHGRY AACDPRHGRY TACDPRHGRY	LTVAAMFRGR LTVAAMFRGR LTVAAMFRGR LTVACIFRGP	gk358233: ↓ MSMREVI MSMREVI MSMREVI MSMKEVI	K DDQM DEQM DDQM DTQM
BEN-1 TBB-2 <i>H. contortus Drosophila</i> Human	221 221 221 221 221 221	sb155 ↓ TYGDLNHLVS TYGDLNHLVS TYGDLNHLVS TYQDLNHLVS TYGDLNHLVS	F <u>sb</u> VTMSGVTTCL LTMSGVTTCL VTMSGVTTCL VTMSGVTTCL ATMSGVTTSL	151: H sb15 ↓ ↓ RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL	RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF	PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF	APLSAKGAQA APLSAKGTQA APLSAKGAQA APLTAKGSQQ APLTARGSQQ	YRALTVAELT YRALTVAELT YRASTVAELT YRALTVAELT YRALTVPELT	 QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM 	Sb149: Y ↓ AACDPRHGRY AACDPRHGRY AACDPRHGRY TACDPRHGRY AACDPRHGRY	LTVAAMFRGR LTVAAMFRGR LTVAAMFRGR LTVACIFRGP LTVATVFRGR	gk358233: ↓ MSMREVI MSMREVI MSMREVI MSMKEVI MSMKEVI	K DDQM DEQM DDQM DDQM DTQM DEQM
BEN-1 TBB-2 <i>H. contortus Drosophila</i> Human <i>S. cerevisiae</i>	221 221 221 221 221 221 221	sb155 ↓ TYGDLNHLVS TYGDLNHLVS TYQDLNHLVS TYGDLNHLVS SYGDLNNLVS	F <u>sb</u> VTMSGVTTCL LTMSGVTTCL VTMSGVTTCL VTMSGVTTCL ATMSGVTTSL SVMSGVTTSL	151: H sb15 ↓ ↓ RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RYPGQLNSDL	RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNLVPF	PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF	APLSAKGAQA APLSAKGTQA APLSAKGAQA APLTAKGSQQ APLTARGSQQ APLTAIGSQS	YRALTVAELT YRALTVAELT YRASTVAELT YRALTVAELT YRALTVPELT FRSLTVPELT	2 QQMFDAKNMM 2 QQMFDAKNMM 2 QQMFDAKNMM 2 QQMFDAKNMM 2 QQMFDAKNMM 3 QQMFDAKNMM	sb149: Y ↓ AACDPRHGRY AACDPRHGRY AACDPRHGRY TACDPRHGRY AACDPRHGRY AAADPRNGRY	LTVAAMFRGR LTVAAMFRGR LTVAAMFRGR LTVACIFRGP LTVATVFRGR LTVAAFFRGK	gk358233: MSMREVI MSMREVI MSMREVI MSMKEVI MSMKEVI VSVKEVE	K DDQM DEQM DDQM DTQM DEQM CDEM
BEN-1 TBB-2 <i>H. contortus Drosophila</i> Human <i>S. cerevisiae</i>	221 221 221 221 221 221 221	sb155 ↓ TYGDLNHLVS TYGDLNHLVS TYQDLNHLVS TYQDLNHLVS SYGDLNNLVS	5: F <u>sb</u> VTMSGVTTCL LTMSGVTTCL VTMSGVTTCL VTMSGVTTCL ATMSGVTTSL SVMSGVTTSL sb158: Stop	151: H sb15 ↓ ↓ RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RYPGQLNSDL	RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNLVPF	PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF PRLHFFMVGY sb154: Stop	APLSAKGAQA APLSAKGTQA APLSAKGAQA APLTAKGSQQ APLTARGSQQ APLTAIGSQS	YRALTVAELT YRALTVAELT YRASTVAELT YRALTVAELT YRALTVPELT FRSLTVPELT	2 QQMFDAKNMM 2 QQMFDAKNMM 2 QQMFDAKNMM 2 QQMFDAKNMM 2 QQMFDAKNMM 2 QQMFDAKNMM	sb149: Y AACDPRHGRY AACDPRHGRY AACDPRHGRY TACDPRHGRY AACDPRHGRY AACDPRHGRY	LTVAAMFRGR LTVAAMFRGR LTVACIFRGP LTVATVFRGR LTVAAFFRGK	gk358233: MSMREVI MSMREVI MSMREVI MSMKEVI MSMKEVI VSVKEVE	K DDQM DDQM DDQM DTQM DEQM CDEM
BEN-1 TBB-2 <i>H. contortus Drosophila</i> Human <i>S. cerevisiae</i>	221 221 221 221 221 221 221	Sb155 ↓ TYGDLNHLVS TYGDLNHLVS TYQDLNHLVS TYGDLNHLVS SYGDLNNLVS	F. F. <u>sb</u> VTMSGVTTCL LTMSGVTTCL VTMSGVTTCL VTMSGVTTCL ATMSGVTTSL SVMSGVTTSL sb158: Stop ↓	151: H sb15 ↓ ↓ RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RYPGQLNSDL	RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNLVPF	PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF PRLHFFMVGY sb154: Stop ↓	APLSAKGAQA APLSAKGTQA APLSAKGAQA APLTAKGSQQ APLTARGSQQ APLTAIGSQS	YRALTVAELT YRALTVAELT YRASTVAELT YRALTVAELT YRALTVPELT FRSLTVPELT	2 QQMFDAKNMM 2 QQMFDAKNMM 2 QQMFDAKNMM 2 QQMFDAKNMM 2 QQMFDAKNMM 2 QQMFDAKNMM	sb149: Y AACDPRHGRY AACDPRHGRY AACDPRHGRY TACDPRHGRY AACDPRHGRY AAADPRNGRY	LTVAAMFRGR LTVAAMFRGR LTVACIFRGP LTVATVFRGR LTVAAFFRGK	gk358233: ↓ MSMREVI MSMREVI MSMREVI MSMKEVI MSMKEVI VSVKEVE	K DDQM DDQM DDQM DDQM DDQM DEQM DEM
BEN-1 TBB-2 <i>H. contortus Drosophila</i> Human <i>S. cerevisiae</i> BEN-1	221 221 221 221 221 221 331	Sb155 TYGDLNHLVS TYGDLNHLVS TYGDLNHLVS TYGDLNHLVS SYGDLNNLVS	F Street Stre	151: H sb15 ↓ ↓ RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RYPGQLNSDL TAVCDIPPRG	RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNLVPF	PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF PRLHFFMVGY sb154: Stop STAIQELFKR	APLSAKGAQA APLSAKGTQA APLSAKGAQA APLTAKGSQQ APLTARGSQQ APLTAIGSQS ISEQFTAMFR	YRALTVAELT YRALTVAELT YRASTVAELT YRALTVAELT YRALTVPELT FRSLTVPELT	 QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM 	sb149: Y AACDPRHGRY AACDPRHGRY AACDPRHGRY TACDPRHGRY AACDPRHGRY AAADPRNGRY AESNMNDLVS	LTVAAMFRGR LTVAAMFRGR LTVACIFRGP LTVATVFRGR LTVAAFFRGK EYQQYQEATA	gk358233: MSMREVI MSMREVI MSMREVI MSMKEVI MSMKEVI VSVKEVE	K DDQM DDQM DDQM DTQM DEQM DEM
BEN-1 TBB-2 <i>H. contortus Drosophila</i> Human <i>S. cerevisiae</i> BEN-1 TBB-2	221 221 221 221 221 221 331 331	Sb155 TYGDLNHLVS TYGDLNHLVS TYQDLNHLVS TYQDLNHLVS SYGDLNNLVS MNVQNKNSSY LNVQNKNSSY	FVEWIPNNVK	151: H sb153 ↓ ↓ RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RYPGQLNSDL TAVCDIPPRG TAVCDIPPRG	RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNLVPF RKLAVNLVPF	PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF PRLHFFMVGY sb154: Stop STAIQELFKR STAIQELFKR	APLSAKGAQA APLSAKGTQA APLSAKGAQA APLTAKGSQQ APLTARGSQQ APLTAIGSQS ISEQFTAMFR ISEQFTAMFR	YRALTVAELT YRALTVAELT YRASTVAELT YRALTVAELT YRALTVPELT FRSLTVPELT RKAFLHWYTC	 QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM GQMFDAKNMM GEGMDEMEFTE GEGMDEMEFTE 	Sb149: Y ↓ AACDPRHGRY AACDPRHGRY AACDPRHGRY TACDPRHGRY AACDPRHGRY AACDPRNGRY AAADPRNGRY AESNMNDLVS AESNMNDLIS	LTVAAMFRGR LTVAAMFRGR LTVACIFRGP LTVATVFRGR LTVAAFFRGK EYQQYQEATA	gk358233: MSMREVI MSMREVI MSMREVI MSMKEVI VSVKEVE 	K DDQM DEQM DDQM DTQM DEQM CDEM
BEN-1 TBB-2 <i>H. contortus Drosophila</i> Human <i>S. cerevisiae</i> BEN-1 TBB-2 <i>H. contortus</i>	221 221 221 221 221 221 331 331 331	Sb155 TYGDLNHLVS TYGDLNHLVS TYGDLNHLVS TYGDLNHLVS SYGDLNNLVS SYGDLNNLVS MNVQNKNSSY LNVQNKNSSY MSVQNKNSSY	S: F <u>sb</u> VTMSGVTTCL LTMSGVTTCL VTMSGVTTCL VTMSGVTTCL ATMSGVTTSL SVMSGVTTSL sb158: Stop FVEWIPNNVK FVEWIPNNVK	151: H sb153 ↓ ↓ RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RYPGQLNSDL TAVCDIPPRG TAVCDIPPRG TAVCDIPPRG	RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNLVPF RKLAVNLVPF LKMSATFIGN LKMAATFVGN	PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF PRLHFFMVGY sb154: Stop \$TAIQELFKR STAIQELFKR STAIQELFKR	APLSAKGAQA APLSAKGTQA APLSAKGAQA APLTAKGSQQ APLTARGSQQ APLTAIGSQS ISEQFTAMFR ISEQFTAMFR ISEQFTAMFR	YRALTVAELT YRALTVAELT YRASTVAELT YRALTVAELT YRALTVPELT FRSLTVPELT RKAFLHWYTC RKAFLHWYTC	 QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM GEGMDEMEFTE EGMDEMEFTE GEGMDEMEFTE 	sb149: Y AACDPRHGRY AACDPRHGRY AACDPRHGRY TACDPRHGRY TACDPRHGRY AACDPRHGRY AAADPRNGRY AESNMNDLVS AESNMNDLIS	LTVAAMFRGR LTVAAMFRGR LTVACIFRGP LTVATVFRGR LTVAAFFRGK EYQQYQEATA EYQQYQEATA	gk358233: MSMREVI MSMREVI MSMREVI MSMKEVI MSMKEVI VSVKEVE 	K DDQM DEQM DDQM DTQM DEQM CDEM
BEN-1 TBB-2 <i>H. contortus</i> <i>Drosophila</i> Human <i>S. cerevisiae</i> BEN-1 TBB-2 <i>H. contortus</i> <i>Drosophila</i>	221 221 221 221 221 221 331 331 331 331	Sb155 ↓ TYGDLNHLVS TYGDLNHLVS TYQDLNHLVS TYGDLNHLVS SYGDLNNLVS MNVQNKNSSY LNVQNKNSSY MSVQNKNSSY YNVQSKNSSY	F Stress Stop S: F Stress Stop S: F Stop S: F Stop S: F Stop S: F Stop S: Stop S: Stop S: Stop S: Stop S:	151: H sb15 ↓ ↓ RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RYPGQLNSDL TAVCDIPPRG TAVCDIPPRG TAVCDIPPRG VAVCDIPPRG	RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNLVPF RKLAVNLVPF LKMSATFIGN LKMAATFVGN LKMAATFVGN	PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF PRLHFFMVGY sb154: Stop \$ STAIQELFKR STAIQELFKR STAIQELFKR STAIQELFKR	APLSAKGAQA APLSAKGTQA APLSAKGAQA APLTAKGSQQ APLTARGSQQ APLTAIGSQS ISEQFTAMFR ISEQFTAMFR ISEQFTAMFR	YRALTVAELT YRALTVAELT YRASTVAELT YRALTVAELT YRALTVPELT FRSLTVPELT RKAFLHWYTC RKAFLHWYTC RKAFLHWYTC	 QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM GEGMDEMEFTE GEGMDEMEFTE GEGMDEMEFTE GEGMDEMEFTE GEGMDEMEFTE 	Sb149: Y ↓ AACDPRHGRY AACDPRHGRY AACDPRHGRY TACDPRHGRY AACDPRHGRY AACDPRHGRY AACDPRHGRY AACDPRNGRY AACDPRNGRY AESNMNDLIS AESNMNDLIS AESNMNDLIS	LTVAAMFRGR LTVAAMFRGR LTVACIFRGP LTVATVFRGR LTVAAFFRGK EYQQYQEATA EYQQYQEATA EYQQYQEATA	gk358233: MSMREVI MSMREVI MSMREVI MSMKEVI MSMKEVI VSVKEVE	K DDQM DDQM DDQM DTQM DEQM DEM
BEN-1 TBB-2 <i>H. contortus</i> <i>Drosophila</i> Human <i>S. cerevisiae</i> BEN-1 TBB-2 <i>H. contortus</i> <i>Drosophila</i> Human	221 221 221 221 221 221 331 331 331 331	Sb155 TYGDLNHLVS TYGDLNHLVS TYQDLNHLVS TYQDLNHLVS SYGDLNNLVS MNVQNKNSSY LNVQNKNSSY MSVQNKNSSY YNVQSKNSSY LAIQSKNSSC	5: F <u>sb</u> VTMSGVTTCL LTMSGVTTCL VTMSGVTTCL VTMSGVTTCL ATMSGVTTSL SVMSGVTTSL sb158: Stop FVEWIPNNVK FVEWIPNNVK FVEWIPNNVK FVEWIPNNVK FVEWIPNNVK	151: H sb15 ↓ ↓ RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RFPGQLNADL RYPGQLNSDL TAVCDIPPRG TAVCDIPPRG TAVCDIPPRG VAVCDIPPRG VAVCDIPPRG	RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNMVPF RKLAVNLVPF RKLAVNLVPF LKMSATFIGN LKMAATFVGN LKMSATFIGN LKMSATFIGN	PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF PRLHFFMPGF PRLHFFMVGY sb154: Stop ↓ STAIQELFKR STAIQELFKR STAIQELFKR STAIQELFKR STAIQELFKR	APLSAKGAQA APLSAKGTQA APLSAKGAQA APLTAKGSQQ APLTARGSQQ APLTAIGSQS ISEQFTAMFR ISEQFTAMFR ISEQFTAMFR ISEQFTAMFR	YRALTVAELT YRALTVAELT YRASTVAELT YRALTVAELT YRALTVPELT FRSLTVPELT RKAFLHWYTC RKAFLHWYTC RKAFLHWYTC RKAFLHWYTC	 QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM QQMFDAKNMM GEGMDEMEFTE EGMDEMEFTE EGMDEMEFTE EGMDEMEFTE EGMDEMEFTE EGMDEMEFTE 	sb149: Y AACDPRHGRY AACDPRHGRY AACDPRHGRY TACDPRHGRY AACDPRHGRY AACDPRHGRY AAADPRNGRY AESNMNDLVS AESNMNDLIS AESNMNDLIS AESNMNDLIS	LTVAAMFRGR LTVAAMFRGR LTVACIFRGP LTVATVFRGR LTVAAFFRGK EYQQYQEATA EYQQYQEATA EYQQYQEATA EYQQYQEATA	gk358233: MSMREVI MSMREVI MSMREVI MSMKEVI MSMKEVI VSVKEVE	K DDQM DDQM DDQM DTQM DEQM DEM

Figure 4 Multiple sequence alignments showing location of ABZ-resistant mutants. BEN-1 is compared to *C. elegans* TBB-2 and β -tubulins from the ruminant parasite *H. contortus*, *Drosophila*, human and *S. cerevisiae*. Locations of mutations found in our screen are indicated in black along with the canonical allele *e1880*. Boxed residues indicate the positions most frequently mutated in parasites. Underlined alleles correspond to BZ resistant mutants found in other organisms. Green represents alleles from the Million Mutant Project and purple denotes the change in *tbb-2(qt1)*. Sequences are truncated to exclude the non-conserved C-terminal regions. *H. contortus iso-1* ACS29564.1, *Drosophila* NP_651606.2, human BAD96759.1, *S. cerevisiae* NP_116616.1. For alignments to the other *C. elegans* β -tubulins see Supplemental Figure 3.

344	Although our data are not precise enough to correlate small changes in resistance with
345	particular structural changes, it is notable that <i>sb151</i> (R241H) and <i>sb163</i> (A63V) had the lowest
346	levels of resistance (Figure 3B), implying they retain some wild-type ben-1 function. Each strain
347	was outcrossed 5-6 times and grew well in the absence of drug, so the lack of full resistance is
348	unlikely to come from background mutations induced by mutagen or any dominant-negative
349	effects of the <i>ben-1</i> mutations. The alanine-to-valine of <i>sb163</i> is the most conservative change in
350	our collection. Because <i>sb163</i> was non-Unc in combination with <i>tbb-2</i> , it likely retains some
351	wild-type ben-1 function. As mentioned above, the same R241H lesion seen in sb151 is
352	benomyl-resistant and cold-sensitive for growth in yeast. As S. cerevisiae has only a single β -
353	tubulin gene, this mutation must retain wild-type function in yeast (THOMAS et al. 1985). In
354	analogy with the yeast R241H mutations, we tested <i>sb151</i> for cold sensitivity. Like <i>ben-1</i> null
355	alleles, <i>sb151</i> had little affect growth at 11° , 20° , or 25° in the absence of drug (Figure 5A). If
356	sb151 compromises normal ben-1 function more at lower temperatures, it should be more
357	resistant and we found a slight increase of resistance at 11° (p < 0.0001 vs. 25°, Figure 5B).
358	

359 ABZ resistance in other β-tubulin mutant genes

The *C. elegans* genome encodes three other β -tubulin genes in addition to *ben-1, tbb-1*, and *tbb-*361 2. We tested two *ben-1* mutations generated by the Million Mutant Project (THOMPSON *et al.* 362 2013) that have amino acid changes found in other *C. elegans* wild-type β -tubulin genes and so 363 might be considered conservative substitutions that retain function (Figure 4). These mutants 364 were identified after random mutagenesis without subsequent selection for ABZ resistance. The 365 *ben-1(gk332957)* G71E change is shared with the divergent β -tubulin TBB-6 (Supplemental 366 Figure 3). This mutation nevertheless compromises but does not eliminate wild-type *ben-1*

Figure 5

Figure 5 Phenotypes of selected mutations in *ben-1* and other tubulin genes. Animals were measured after eight days at 11°, three days at 20° and two days at 25°. Unless otherwise indicated, experiments were performed at 20°. Upper panels (A, C, E, G) were grown in the absence of ABZ and were normalized to the wild type run in parallel. Lower panels (B, D, F, H) are the corresponding experiments grown on 7.5 μ M ABZ and are normalized to the strain grown in parallel in the absence of drug. (A, B) Although the corresponding *S. cerevisiae* is coldsensitive for growth, *sb151* was not. *sb151* did cause a slight reduction in *ben-1* function at 11° as indicated by better growth on ABZ at the lower temperature. (C, D) The *ben-1* G71E mutation (*gk332957*) from the Million Mutant Project showed partial resistance to ABZ but R324K (*gk358233*) did not, indicating that the latter mutation does not compromise function. (E, F) Loss of *tbb-4*, which includes the sensitive F200 residue, did not slow growth in double mutants with *ben-1* in the absence of ABZ nor did it alter drug sensitivity. (G, H) The temperature-sensitive mutation *tbb-2(qt1)* showed slight resistance at 25°. Two-tailed Mann-Whitney Rank Sum test were used to calculate p-values. Mean and standard deviations are indicated.

367	function as it shows partial resistance ($p < 0.0001$ vs. the wild type, Figure 5C, D). The
368	$gk358233$ R324K allele is likely a permissible change as it is found in fly, human, and yeast β -
369	tubulins as well as TBB-4, TBB-6, and MEC-7 (Figure 4, Supplemental Figure 3). As expected
370	for a functional protein, this allele was still sensitive to ABZ (Figure 5C, D). Both of the Million
371	Mutant Project alleles showed compromised growth off drug, but the strains were not outcrossed.
372	The <i>tbb-4</i> , <i>tbb-6</i> , and <i>mec-7</i> genes each encode the F200 residue that correlates with BZ
373	sensitivity, but mutations in these genes are not found in wild ABZ resistant strains (HAHNEL et
374	al. 2018). As tbb-4 is expressed in some of the same neurons as ben-1 (HAO et al. 2011; NISHIDA
375	et al. 2021), we asked if loss of both tbb-4 and ben-1 would alter growth, similar to the tbb-2
376	<i>ben-1</i> double mutant. However, we found no changes ($p = 0.10$) off of drug and the strain was
377	still resistant when exposed to ABZ (Figure 5E, F).
378	Although TBB-2 is predicted not to bind ABZ as it is Y200, the $qt1$ allele has been
379	implicated in benomyl resistance (WRIGHT AND HUNTER 2003). This tbb-2 mutation encodes the
380	E198K change that is ABZ resistant when edited into <i>ben-1</i> (DILKS <i>et al.</i> 2021) and is present in
381	the <i>ben-1(sb159)</i> allele from our screen. It is also found in BZ resistant parasitic nematodes and
382	fungi (JUNG et al. 1992; LIU et al. 2014; MOHAMMEDSALIH et al. 2020). Wright and Hunter
383	(2003) found that $tbb-2(qt1)$ prevented embryonic spindle orientation defects caused by benomyl
384	microtubule depolymerization at the first embryonic cleavage, particularly at higher
385	temperatures. We found a small increase in resistance in $tbb-2(qt1)$ in our growth assays at the
386	restrictive temperature of 25° (p = 0.01, Figure 5E, F).
387	

388 **DISCUSSION**

389 The World Health Organization includes ABZ on its list of 100 Essential Medicines. Billions of 390 ABZ doses have been administered for treatment of parasitic nematodes, mainly to children 391 (WORLD HEALTH ORGANIZATION 2017). Previous widespread use of BZ in agriculture caused the 392 evolution of resistance, often rendering BZ drugs ineffective for a number of livestock parasitic 393 nematode species. Resistance amongst human helminths seems highly likely and concerns are 394 growing about its emergence (MOSER *et al.* 2017). β -tubulins are the major target of BZ drugs in 395 both fungi (THOMAS et al. 1985; JUNG et al. 1992; LIU et al. 2014) and nematodes (DRISCOLL et 396 al. 1989; KWA et al. 1995; WIT et al. 2020). To better understand the genetics of BZ resistance, 397 we used C. *elegans* as a model. The β -tubulin *ben-1* gene was known to be the major target of 398 the BZ class of drugs (DRISCOLL et al. 1989; HAHNEL et al. 2018). We explored genetic 399 interactions of *ben-1* and ABZ with the major β -tubulin isotypes, *tbb-1* and *tbb-2*, and conducted 400 forward genetic screens to examine the types of mutations that lead to ABZ resistance. 401

402 Interaction of *ben-1* with other β-tubulin genes

403 Assigning paralogous functions among β -tubulins within an organism, or inferring homology by 404 descent of β -tubulins between organisms, is problematic because of their slow rate of evolution. 405 The exception to tubulin conservation occurs in the C-terminus, which shows little similarity 406 between tubulin paralogs within a species or between tubulins from different species. A few 407 specializations have been ascribed to these regions (HURD 2018). Although mutations in C. 408 elegans ben-1 and iso-1 of the ruminant parasite H. contortus both confer BZ resistance, which 409 might imply homology, levels and cellular patterns of expression may be more critical to define shared functions than primary sequence (SAUNDERS et al. 2013). 410

411 To better understand BZ resistance, we sought to clarify the functional relationships 412 between *ben-1* and the major β -tubulin isotypes *tbb-1* and *tbb-2*. Unlike *ben-1*, neither *tbb-1* and 413 *tbb-2* are predicted to bind BZ as they encode Y200 rather than the sensitive F200 residue. The 414 tbb-1 and tbb-2 genes act redundantly with each other for viability, both maternally (WRIGHT 415 AND HUNTER 2003; ELLIS et al. 2004; LU et al. 2004) and zygotically (Figure 1). Of these two 416 genes, we found that *tbb-2* shows greater functional overlap with *ben-1*. In the absence of ABZ, 417 *tbb-2* and *ben-1* are redundant for movement, body morphology, and growth (Figure 1). For 418 these phenotypes, the *tbb-2 ben-1* double mutant resembles the wild type exposed to ABZ. A 419 simple model is that TBB-2 and BEN-1 are expressed in the cells responsible for the ABZinduced phenotypes. Consistent with this observation, tbb-2 mutants had a greater increase in 420 421 ABZ sensitivity relative to the wild type than did loss of *tbb-1* (Figures 1 and 2). The phenotypic 422 similarities between *tbb-2* mutants and *ben-1* mutants could be caused by shared isotype-423 specific functions. Another possibility is that the overall higher levels of *tbb-2* expression 424 relative to *tbb-1* (NISHIDA *et al.* 2021) could be important. If the stronger interactions that we 425 observed in *tbb-2* double mutants are simply a matter of higher overall β -tubulin levels, it might 426 be possible to increase BZ toxicity in parasites with subclinical doses of microtubule inhibitors 427 that target all microtubules, rather than only those microtubules that include β -tubulin isotypes 428 with F200.

429

430 *tbb-1* and *tbb-2* have non-overlapping functions

431 *tbb-1* and *tbb-2* are redundant for viability although single mutants of *tbb-1* and *tbb-2* have only

432 subtle effects on tubulin dynamics and modest effects on hatching rates (Wright and Hunter

433 2003; Ellis et al. 2004; Lu et al. 2004; Honda et al. 2017). If each member of a redundant gene

442	Only certain BEN-1 residues might mutate to cause ABZ resistance
441	
440	CROMBIE <i>et al.</i> 2021).
439	temperatures of C. elegans collected from the Hawaiian Islands (4° to 23°) (CROMBIE et al. 2019;
438	mutants had compromised growth at 25° (Figure 1). This range matches the substrate
437	specialized for growth at different temperatures, as <i>tbb-1</i> mutants grew poorly at 11° and <i>tbb-2</i>
436	overlapping essential functions, selection will retain both copies. Indeed, <i>tbb-1</i> and <i>tbb-2</i> may be
435	the pair (Nowak et al. 1997). However, if the members of the gene pair also have non-
434	pair efficiently provides the same functions, selection might not act to preserve both members of

443 As only one allele from the Driscoll *et al.* (1989) screen for benomyl resistance is available

444 (e1880), we conducted forward genetic screens to explore the types of mutations that can confer

445 ABZ resistance. Consistent with the idea that *ben-1* loss leads to ABZ resistance (DRISCOLL *et*

446 *al.* 1989; HAHNEL *et al.* 2018; DILKS *et al.* 2020; DILKS *et al.* 2021), we found a number of

447 nonsense alleles (*sb152*, *sb158*, *sb154*) and a splice donor mutation (*sb153*) among the 16 alleles

448 we sequenced. These mutations are likely protein nulls and are distributed throughout the gene

449 (Figure 4). One might suspect that the high conservation of β -tubulins would imply that most

450 *ben-1* residues are critical for function *a priori* and so our screen could have identified missense

451 mutations in a large proportion of the conserved sites. Outside the non-conserved C-terminus,

452 *ben-1* shows 77% and 97% identity with β -tubulins from the yeast *S. cerevisiae* and the parasitic

453 nematode *H. contortus*, respectively. Comparisons to other *Caenorhabditis* species also indicate

454 that *ben-1* evolution is highly constrained (HAHNEL *et al.* 2018). However, of the 12 missense

455 mutations (we include the canonical allele e1880 in this total), seven have what might be

456 considered unusual properties.

457 Several lines of evidence indicate that relatively few *ben-1* missense mutations can lead 458 to sufficient loss of activity to confer resistance. For example, we found two mutations that 459 correspond to BZ resistant mutations in other parasites and fungi. In those organisms, the genes 460 are essential, so mutations likely represent specific changes that block drug binding and retain 461 sufficient function to compete in the wild in the absence of drug. Such mutations in the non-462 essential *ben-1* gene should be rare compared to those mutations that cause loss of function, if 463 most *ben-1* missense mutations were to confer resistance. Fifteen mutations leading to resistance 464 have been reported in parasitic nematodes and fungi. However, only three can be created in one 465 step in *ben-1* as GC to AT transitions, which accounts for 90% of EMS-induced C. elegans mutations (THOMPSON et al. 2013) (Supplemental Table 1) and these mutations do not include 466 467 the F167Y, E198A, and F200Y commonly found in resistant parasites. EMS can induce H6Y 468 found in Aspergillus nidulans, E198K found in A. nidulans, Gibberella zeae, and H. contortus, 469 and R241H found in S. cerevisiae (THOMAS et al. 1985; JUNG et al. 1992; LIU et al. 2014; 470 HAHNEL et al. 2018; MOHAMMEDSALIH et al. 2020). We found two of these three mutations, 471 sb159 (E198K) and sb151 (R241H). sb163 also appears to be another mutation that retains 472 function as it was selected to confer movement in the *tbb-2* background. Another three ABZ 473 resistant missense mutations have been reported in wild C. elegans isolates (HAHNEL et al. 474 2018), and of these S145F and M257I can be induced by EMS. These alleles may differ from the 475 BZ resistant mutations in the species described above in that they need not retain wild-type 476 functions. 477 Another indication that a limited number of missense changes in *ben-1* can mutate to

ABZ resistance is that we found two pairs of mutations that cause different amino acid changes
in the same codon. *e1880* (G104D) and *sb145* (G104S) both alter amino acid 104 while *sb144*

480 (G142E) and *sb164* (G142R) are both at position 142. This overlap could indicate that these 481 positions are unique in that could be critical for protein function.

482 Our screen appeared to efficiently identify nonsense and splicing mutations more than 483 missense alleles, again implying an unexpected rarity of amino acid changes that can confer 484 resistance. We isolated four of 35 possible EMS-induced *ben-1* nonsense and splicing mutations. 485 By contrast, we found only 12 of the 389 possible *ben-1* missense mutations that can be induced 486 by EMS (excluding the non-conserved C-terminus, K.M. Tahsin Hassan Rahit and M. Tarailo-487 Graovac, personal communication). Perhaps a more compelling example of the paucity of 488 missense alleles that can confer ABZ resistance is that in wild C. elegans populations, where 489 *ben-1* mutations may arise after environmental BZ exposure, Hahnel *et al.* (2018) found that only

490 three of 25 resistance mutations were missense.

491 Thus, the assumption that high conservation of β -tubulin indicates that most missense 492 alleles would result in severe loss of function may not be valid. This hypothesis is consistent 493 with a systematic survey of the S. cerevisiae β -tubulin gene. Reijo et al. (1994) changed clusters 494 of charge amino acids to alanine and found that only 11of 55 alleles were lethal (although many 495 viable alleles would cause fitness costs in nature). Only five were strongly resistant to benomyl. 496 This result suggests that in *C. elegans* most *ben-1* missense mutations would not confer ABZ 497 resistance as they could retain sufficient function to deliver the BZ poison to the microtubule. 498

499 ben-1 is the major ABZ target in C. elegans

500 With the widespread use of ABZ in human populations, it is critical to understand the genetics of

501 nematode drug resistance. *ben-1* is clearly the major target in *C. elegans* under laboratory

502 conditions. The resistant allele *sb163* (A63V) that retains *ben-1(+)* function could represent a

503	new mutation that may arise in parasites. If most <i>ben-1</i> missense alleles do not confer resistance,
504	parasitic nematodes species with a redundant Y200 containing paralogs might be more likely to
505	acquire resistance through nonsense and deletion mutations than the F167Y, E198A, and F200Y
506	commonly found in BZ resistant parasites. Additional genes also influence BZ resistance in both
507	wild C. elegans and in parasitic nematodes (HAHNEL et al. 2018; ZAMANIAN et al. 2018;
508	FURTADO et al. 2019a). We did find one mutation (sb156) with no lesions in the ben-1 coding
509	region and this mutant had the weakest resistance in our study. Further optimization of our
510	screens to recover weak resistance may uncover additional genes.
511	
512	FUNDING
513	This work was supported by grants from the Canadian Institute of Health Research (CIHR) and
514	the Natural Science and Engineering Council (NSERC) of Canada to P.E.M. C.M.K, J.S.G., and
515	E.C.A. were funded by NIH R01 AI153088. Some strains were provided by the CGC, which is
516	funded by NIH Office of Research Infrastructure Programs (P40 OD010440).
517	
518	COMPETING INTERESTS
519	None
520	
521	ACKNOWLEDGMENTS: We thank the members of the labs of D. Hansen, J.D. McGhee and
522	M. Tarailo-Graovac for comments throughout this project. We also thank WormBase. F. Jean, S.
523	Stasiuk, and F. Snider are thanked for technical support. K.M. Tahsin Hassan Rahit and M.
524	Tarailo-Graovac provided calculation for mutation frequencies. L.M.P. was part of the Waterloo
525	undergraduate Co-op program.

Aguayo-Ortiz, R., O. Mendez-Lucio, J. L. Medina-Franco, R. Castillo, L. Yepez-Mulia et al.,

526

528

527 **REFERENCES**

- 529 2013 Towards the identification of the binding site of benzimidazoles to beta-tubulin of 530 Trichinella spiralis: insights from computational and experimental data. J Mol Graph 531 Model 41: 12-19. 532 Andersen, E. C., J. S. Bloom, J. P. Gerke and L. Kruglyak, 2014 A variant in the neuropeptide 533 receptor npr-1 is a major determinant of Caenorhabditis elegans growth and physiology. 534 PLoS Genet 10: e1004156. 535 Avramenko, R. W., E. M. Redman, L. Melville, Y. Bartley, J. Wit et al., 2019 Deep amplicon 536 sequencing as a powerful new tool to screen for sequence polymorphisms associated with 537 anthelmintic resistance in parasitic nematode populations. Int J Parasitol 49: 13-26. 538 Becker, S. L., H. J. Liwanag, J. S. Snyder, O. Akogun, V. Belizario, Jr. et al., 2018 Toward the 539 2020 goal of soil-transmitted helminthiasis control and elimination. PLoS Negl Trop Dis 540 12: e0006606. 541 Brenner, S., 1974 The genetics of *Caenorhabditis elegans*. Genetics 77: 71-94. 542 Chen, C., L. A. Fenk and M. de Bono, 2013 Efficient genome editing in Caenorhabditis elegans 543 by CRISPR-targeted homologous recombination. Nucleic Acids Res 41: e193. 544 Crombie, T. A., P. Battlay, R. E. Tanny, K. S. Evans, C. M. Buchanan et al., 2021 Local 545 adaptation and spatiotemporal patterns of genetic diversity revealed by repeated sampling 546 of Caenorhabditis elegans across the Hawaiian Islands. bioRxiv: 547 2021.2010.2011.463952. 548 Crombie, T. A., S. Zdraljevic, D. E. Cook, R. E. Tanny, S. C. Brady et al., 2019 Deep sampling
- 549 of Hawaiian *Caenorhabditis elegans* reveals high genetic diversity and admixture with
 550 global populations. Elife 8.
- 551 Dilks, C. M., S. R. Hahnel, Q. Sheng, L. Long, P. T. McGrath *et al.*, 2020 Quantitative
 552 benzimidazole resistance and fitness effects of parasitic nematode beta-tubulin alleles. Int
 553 J Parasitol Drugs Drug Resist 14: 28-36.
- Dilks, C. M., E. J. Koury, C. M. Buchanan and E. C. Andersen, 2021 Newly identified parasitic
 nematode beta-tubulin alleles confer resistance to benzimidazoles. Int J Parasitol Drugs
 Drug Resist 17: 168-175.
- 557 Driscoll, M., E. Dean, E. Reilly, E. Bergholz and M. Chalfie, 1989 Genetic and molecular
 558 analysis of a *Caenorhabditis elegans* beta-tubulin that conveys benzimidazole sensitivity.
 559 J Cell Biol 109: 2993-3003.
- Ellis, G. C., J. B. Phillips, S. O'Rourke, R. Lyczak and B. Bowerman, 2004 Maternally expressed
 and partially redundant beta-tubulins in *Caenorhabditis elegans* are autoregulated. J Cell
 Sci 117: 457-464.
- Fontaine, P., and K. Choe, 2018 The transcription factor SKN-1 and detoxification gene *ugt-22*alter albendazole efficacy in *Caenorhabditis elegans*. Int J Parasitol Drugs Drug Resist 8:
 312-319.
- Friedman, P. A., and E. D. Platzer, 1980 Interaction of anthelmintic benzimidazoles with *ascaris suum* embryonic tubulin. Biochimica et Biophysica Acta 630: 271-278.
- 568 Furtado, L. F. V., P. H. N. de Aguiar, L. W. Zuccherato, T. T. G. Teixeira, W. P. Alves et al.,
- 569 2019a Albendazole resistance induced in Ancylostoma ceylanicum is not due to single-

570 nucleotide polymorphisms (SNPs) at codons 167, 198, or 200 of the beta-tubulin gene, 571 indicating another resistance mechanism. Parasitol Res 118: 837-849. 572 Furtado, L. F. V., C. D. S. Medeiros, L. W. Zuccherato, W. P. Alves, V. de Oliveira et al., 2019b 573 First identification of the benzimidazole resistance-associated F200Y SNP in the beta-574 tubulin gene in Ascaris lumbricoides. PLoS One 14: e0224108. 575 Garcia-Gonzalez, A. P., A. D. Ritter, S. Shrestha, E. C. Andersen, L. S. Yilmaz et al., 2017 576 Bacterial Metabolism Affects the C. elegans Response to Cancer Chemotherapeutics. 577 Cell 169: 431-441 e438. 578 Hahnel, S. R., C. M. Dilks, I. Heisler, E. C. Andersen and D. Kulke, 2020 Caenorhabditis 579 elegans in anthelmintic research - Old model, new perspectives. Int J Parasitol Drugs 580 Drug Resist 14: 237-248. 581 Hahnel, S. R., S. Zdraljevic, B. C. Rodriguez, Y. Zhao, P. T. McGrath et al., 2018 Extreme 582 allelic heterogeneity at a *Caenorhabditis elegans* beta-tubulin locus explains natural 583 resistance to benzimidazoles. PLoS Pathog 14: e1007226. 584 Hao, L., M. Thein, I. Brust-Mascher, G. Civelekoglu-Scholey, Y. Lu et al., 2011 Intraflagellar 585 transport delivers tubulin isotypes to sensory cilium middle and distal segments. Nat Cell 586 Biol 13: 790-798. Honda, Y., K. Tsuchiya, E. Sumiyoshi, N. Haruta and A. Sugimoto, 2017 Tubulin isotype 587 588 substitution revealed that isotype combination modulates microtubule dynamics in C. 589 elegans embryos. J Cell Sci 130: 1652-1661. 590 Hurd, D. D., 2018 Tubulins in C. elegans. WormBook: 1-34. 591 Hurd, D. D., R. M. Miller, L. Nunez and D. S. Portman, 2010 Specific α - and β -tubulin isotypes 592 optimize the functions of sensory cilia in Caenorhabditis elegans. Genetics 185: 883-593 896. 594 Jones, L. M., A. J. Flemming and P. E. Urwin, 2015 NHR-176 regulates cyp-35d1 to control 595 hydroxylation-dependent metabolism of thiabendazole in *Caenorhabditis elegans*. 596 Biochem J 466: 37-44. 597 Jung, M. K., I. B. Wilder and B. R. Oakley, 1992 Amino acid alterations in the benA (beta-598 tubulin) gene of Aspergillus nidulans that confer benomyl resistance. Cell Motil 599 Cytoskeleton 22: 170-174. 600 Katic, I., and H. Groshans, 2013 Targeted heritable mutation and gene conversion by Cas9-601 CRISPR in Caenorhabditis elegans. Genetics 195: 1173-1176. 602 Kitchen, S., R. Ratnappan, S. Han, C. Leasure, E. Grill et al., 2019 Isolation and characterization 603 of a naturally occurring multidrug-resistant strain of the canine hookworm, Ancylostoma 604 caninum. Int J Parasitol 49: 397-406. 605 Kotze, A. C., and R. K. Prichard, 2016 Anthelmintic Resistance in *Haemonchus contortus*: 606 History, Mechanisms and Diagnosis. Adv Parasitol 93: 397-428. 607 Krucken, J., K. Fraundorfer, J. C. Mugisha, S. Ramunke, K. C. Sifft et al., 2017 Reduced 608 efficacy of albendazole against Ascaris lumbricoides in Rwandan schoolchildren. Int J 609 Parasitol Drugs Drug Resist 7: 262-271. 610 Kwa, M. S., J. G. Veenstra and M. H. Roos, 1994 Benzimidazole resistance in Haemonchus 611 *contortus* is correlated with a conserved mutation at amino acid 200 in beta-tubulin 612 isotype 1. Molecular and Biochemical Parasitology 63: 299-303. 613 Kwa, M. S., J. G. Veenstra, M. Van Dijk and M. H. Roos, 1995 Beta-tubulin genes from the 614 parasitic nematode Haemonchus contortus modulate drug resistance in Caenorhabditis 615 elegans. J Mol Biol 246: 500-510.

616 Lacey, E., and J. H. Gill, 1994 Biochemistry of benzimidazole resistance. Acta Tropica 56: 245-617 262. 618 Lacey, E., and R. K. Prichard, 1986 Interactions of benzimidazoles (BZ) with tubulin from BZ-619 sensitive and BZ-resistant isolates of Haemonchus contortus. Mol Biochem Parasitol 19: 620 171-181. 621 Liu, Y., X. Chen, J. Jiang, M. S. Hamada, Y. Yin et al., 2014 Detection and dynamics of 622 different carbendazim-resistance conferring beta-tubulin variants of Gibberella zeae 623 collected from infected wheat heads and rice stubble in China. Pest Manag Sci 70: 1228-624 1236. 625 Lu, C., 2004 The Roles of Tubulins in *Caenorhabditis elegans* Meiotic and Mitotic Spindle 626 Formation, Ph.D. Thesis, pp. 136. University of Calgary, Calgary. 627 Lu, C., M. Srayko and P. E. Mains, 2004 The Caenorhabditis elegans microtubule-severing 628 complex MEI-1/MEI-2 katanin Interacts differently with two superficially redundant 629 beta-tubulin isotypes. Mol Biol Cell 15: 142-150. 630 Luduena, R. F., 1998 Multiple forms of tubulin: different gene products and covalent 631 modifications. Int Rev Cytol 178: 207-275. 632 Mains, P. E., I. A. Sulston and W. B. Wood, 1990 Dominant maternal-effect mutations causing 633 embryonic lethality in Caenorhabditis elegans. Genetics 125: 351-369. 634 Matouskova, P., L. Lecova, R. Laing, D. Dimunova, H. Vogel et al., 2018 UDP-635 glycosyltransferase family in Haemonchus contortus: Phylogenetic analysis, constitutive 636 expression, sex-differences and resistance-related differences. Int J Parasitol Drugs Drug 637 Resist 8: 420-429. 638 Mohammedsalih, K. M., J. Krücken, A. Khalafalla, A. Bashar, F.-R. Juma et al., 2020 New 639 codon 198 β -tubulin polymorphisms in highly benzimidazole resistant Haemonchus 640 contortus from goats in three different states in Sudan. Parasites & Vectors 13: 114. 641 Moser, W., C. Schindler and J. Keiser, 2017 Efficacy of recommended drugs against soil 642 transmitted helminths: systematic review and network meta-analysis. BMJ 358: j4307. 643 Nishida, K., K. Tsuchiya, H. Obinata, S. Onodera, Y. Honda et al., 2021 Expression Patterns and 644 Levels of All Tubulin Isotypes Analyzed in GFP Knock-In C. elegans Strains. Cell Struct 645 Funct 46: 51-64. 646 Nowak, M. A., M. C. Boerlijst, J. Cooke and J. M. Smith, 1997 Evolution of genetic redundancy. 647 Nature 388: 167-171. 648 Nyaanga, J., T. A. Crombie, S. J. Widmayer and E. C. Andersen, 2021 easyXpress: An R 649 package to analyze and visualize high-throughput C. elegans microscopy data generated 650 using CellProfiler. PLoS One 16: e0252000. Organization, W. H., 2017 Summary of global update on preventive chemotherapy 651 652 implementation in 2016: crossing the billion. Wkly Epidemiol Rec 92: 589-593. 653 Orr, A. R., J. E. Quagraine, P. Suwondo, S. George, L. M. Harrison et al., 2019 Genetic Markers 654 of Benzimidazole Resistance among Human Hookworms (Necator americanus) in 655 Kintampo North Municipality, Ghana. Am J Trop Med Hyg 100: 351-356. Park, E. C., and H. R. Horvitz, 1986 Mutations with dominant effects on the behavior and 656 657 morphology of the nematode *Caenorhabditis elegans*. Genetics 113: 821-852. 658 Redman, E., F. Whitelaw, A. Tait, C. Burgess, Y. Bartley et al., 2015 The emergence of 659 resistance to the benzimidazole anthlemintics in parasitic nematodes of livestock is 660 characterised by multiple independent hard and soft selective sweeps. PLoS Negl Trop 661 Dis 9: e0003494.

- Reijo, R. A., E. M. Cooper, G. J. Beagle and T. C. Huffaker, 1994 Systematic mutational
 analysis of the yeast beta-tubulin gene. Mol Biol Cell 5: 29-43.
- Rose Vineer, H., E. R. Morgan, H. Hertzberg, D. J. Bartley, A. Bosco *et al.*, 2020 Increasing
 importance of anthelmintic resistance in European livestock: creation and meta-analysis
 of an open database. Parasite 27: 69.
- Saunders, G. I., J. D. Wasmuth, R. Beech, R. Laing, M. Hunt *et al.*, 2013 Characterization and
 comparative analysis of the complete *Haemonchus contortus* beta-tubulin gene family
 and implications for benzimidazole resistance in strongylid nematodes. Int J Parasitol 43:
 465-475.
- Schneider, C. A., W. S. Rasband and K. W. Eliceiri, 2012 NIH Image to ImageJ: 25 years of
 image analysis. Nat Methods 9: 671-675.
- Schulz, J. D., W. Moser, E. Hurlimann and J. Keiser, 2018 Preventive Chemotherapy in the Fight
 against Soil-Transmitted Helminthiasis: Achievements and Limitations. Trends Parasitol
 34: 590-602.
- Spence, A. M., K. M. B. Malone, M. M. A. Novak and W. R.A., 1982 The effects of
 mebendazole on the growth and development of *Caenorhabditis elegans*. Can. J. Zool.
 60: 2616-2623.
- Stasiuk, S. J., G. MacNevin, M. L. Workentine, D. Gray, E. Redman *et al.*, 2019 Similarities and
 differences in the biotransformation and transcriptomic responses of Caenorhabditis
 elegans and Haemonchus contortus to five different benzimidazole drugs. Int J Parasitol
 Drugs Drug Resist 11: 13-29.
- Thomas, J. H., N. F. Neff and D. Botstein, 1985 Isolation and characterization of mutations in
 the beta-tubulin gene of *Saccharomyces cerevisiae*. Genetics 111: 715-734.
- Thompson, O., M. Edgley, P. Strasbourger, S. Flibotte, B. Ewing *et al.*, 2013 The Million
 Mutation Project: A new approach to genetics in *Caenorhabditis elegans*. Genome Res
 23: 1749-1762.
- Wit, J., C. M. Dilks and E. C. Andersen, 2020 Complementary Approaches with Free-living and
 Parasitic Nematodes to Understanding Anthelmintic Resistance. Trends Parasitol.
- World Health Organization, G. B. o. D. S. C., 2015 Investing to overcome the global impact of
 neglected tropical diseases. Third WHO report on neglected tropical diseases, pp. WHO
 Document Production Services, Geneva, Switzerland.
- Wright, A. J., and C. P. Hunter, 2003 Mutations in a β-tubulin disrupt spindle orientation and
 microtubule dynamics in the early *Caenorhabditis elegans* embryo. Mol Biol Cell 14:
 4512-4525.
- Zamanian, M., D. E. Cook, S. Zdraljevic, S. C. Brady, D. Lee *et al.*, 2018 Discovery of genomic
 intervals that underlie nematode responses to benzimidazoles. PLoS Negl Trop Dis 12:
 e0006368.
- 699
- 700

Supplemental Figure 1 Optimization of growth assays. (A) ABZ was added to plates dissolved in DMSO. 0.5% DMSO did not affect growth of wild type *ben-1*, *tbb-1* or *tbb-2* and so was not included in control plates. (B) Dose response curves of wild type grown at 20° and measured after 1 or 2 days growth. 7.5 µM was chosen so that both increased and decreased ABZ sensitivity could be assessed. (C) Comparisons of growth differences between wild type and *ben-1* null alleles on 7.5 µM ABZ after 2 or 3 days of growth. Differences were maximized at 3 days, which was before the next generation begins to hatch. This allowed scoring of arrested animals. Two-tailed Mann-Whitney Rank Sum test were used to calculate p values. Mean and standard deviations are indicated.

-	2,000,000	3,000,000	4,000,000	5,000,000	6,000,000	7,000,000	8,000,000	9,000,000	10,000,000	11,000,000	12,000,000	13,000,000
A		00			3,330,730	_		3,040,000			C54C6.9 → C54C6.9	
	C54C6 ben-1	(C54C6.2)	•		+	•		•	•			•
			Site 1		Site 1	Site 2		Site 2	Site 4			Site 4
			Forward		Reverse	Forward		Reverse	Forward			Reverse
								•				
								Site 3	Site 3			
								Forward	Revers	e		
	-	_										

В	Forward Primer		Reverse Primer	Annealing Temperature (°C)	Amplification Time (s)	Rounds of Replication
	Site 1	CCCTCTACGTGACCCTTCTC	AAACTAATGCAAAGCCCGCTG	64	15	25
	Site 2	TAAACGTGTGGTGTCTCTTG	CATTGAGTTGTCCTGGGAAG	61	25	25
	Site 3	CGAGGCTCTTTATGATATCTGCT	AGGGCGGAGCGTTGTAAATTG	63	25	25
	Site 4	GATTCGAAAGCGAAAACG	AACAAATTATGGCAGGAAGC	58	30	25

Supplemental Figure 2

Supplemental Figure 2 (A) Position of primers used for ben-1 genomic sequencing in a

WormBase screenshot. Exons are indicated in blue. (B) Primer sequences and PCR conditions

for *ben-1* sequencing.

											e.	1880: D	
				sb15	52: Stop			sb163: V gk33	8 <i>2957</i> : E	sb150:	N 5	b145: S	<i>sb146:</i> R
	-				\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
BEN-1	1	MREIVHVQAG	QCGNQIGAKF	WEVISDEHGI	QPDGTYKGES	DLQLERINVY	YNEANGGKYV	PRAVLVDLEP	GTMDSVRSG	PFGQLFRPDN	FVFGQSGAGNN	WAKGHYI	EGA
TBB-1	1	MREIVHVQAG	QCGNQIGSKF	WEVISDEHGI	QPDGTFKGES	DLQLERIDVY	YNEANNGKYV	PRAVLVDLEP	GTMDSVRSG	PFGQLFRPDN	FVFGQSGAGNN	WAKGHYI	EGA
TBB-2	1	MREIVHVQAG	QCGNQIGSKF	WEVISDEHGI	QPDGTFKGET	DLQLERIDVY	YNEANNGKYV	PRAVLVDLEP	GTMDSVRSG	PFGQLFRPDN	FVFGQSGAGNN	WAKGHYI	EGA
TBB-4	1	MREIVHIQAG	QCGNQIGAKF	WEVISDEHGI	DPTGAYNGDS	DLQLERINVY	YNEASGGKYV	PRACLVDLEP	GTMDSVRAG	PFGQLFRPDN	FVFGQSGAGNN	WAKGHYI	EGA
TBB-6	1	MKEIINVQVG	QCGNQIGAKF	WEYISEEHGL	QTDGTYKGDN	GSQLERITSY	YKEMEGRKYV	PRAILVDLDP	ESINYVRST	QYGKLFDPEN	AVSGESGAGNN	WSRGYYE	Q <mark>GA</mark>
MEC-7	1	MREIVHIQAG	QCGNQIGSKF	WEVISDEHGI	DPSGQYVGDS	DLQLERINVY	YNEAGSNKYV	PRAVLVDLEP	GTMDSVRSG	PFGQLFRPDN	YVFGQSGAGNN	WAKGHYI	EGA
				sb144	<i>:</i> E <i>, sb164</i> : R	<i>sb153:</i> Splic	ce			<u>sb159: K</u> , tbb-	2(qt1): K		
					\checkmark	\checkmark				$\mathbf{\Lambda}$			
BEN-1	111	ELVDNVLDVV	RKEAEGCDCL	QGFQLTHSLG	GGTGSGMGTL	LISKIREEYP	DRIMSSFSVV	PSPKVSDTVV	EPYNATLSV	HQLVENTDET	FCIDNEALYDI	CFRTLKI	SN-
TBB-1	111	ELVDNVLDVI	RKEAEGCDCL	QGFQLTHSLG	GGTGSGMGTL	LISKIREEFP	DRIMSSFSVV	PSPKVSDTVV	EPYNATLSV	HQLVENTDET	YCIDNEALYDI	CYRTLKI	TN-
TBB-2	111	ELVDNVLDVI	RKEAEGCDCL	QGFQLTHSLG	GGTGSGMGTL	LISKIREEYP	DRIMSSFSVV	PSPKVSDTVV	EPYNATLSV	HQLVENTDET	YCIDNEALYDI	CYRTLKI	TN-
TBB-4	111	ELVDNVLDVV	RKEAESCDCL	QGFQMTHSLG	GGTGSGMGTL	LISKIREEYP	DRIMMIFSVV	PSPKVSDTVV	EPYNATLSV	HQLVENTDET	FCIDNEALYDI	CFRTLKI	TT-
TBB-6	111	EIVDKVLSVI	RREAEAADSL	EGFQLIHSLG	GGTGSGLGSL	LISKLREEYS	DKTLSTOSII	PSAKVSDTVV	EPYNAILSM	PHLMDNCDEN	FCIDNEAIFDI	CQYNLKI	ENR
MEC-7	111	ELVDNVLDVV	RKEAESTDCL	QGFQLTHSLG	GGTGSGMGTL	LISKIREEYP	DRIMNIESVV	PSPKVSDTVV	EPYNATLSV	HQLVENTDST	FCIDNEALYDI	CFRTLKI	TT-
		sbi	155: F <u>sl</u>	<u>b151: Н</u> sb157	F					sb149: Y		gk358233	: К
			\checkmark	\checkmark	\checkmark					\checkmark		\checkmark	
BEN-1	220	PTYGDLNHLV	SVTMSGVTTC	LRFPGQLNAD	LRKLAVNMVP	FPRLHFFMPG	FAPLSAKGAQ	AYRALTVAEL	TQQMFDAKN	MMAACDPRHG	RYLTVAAMFRG	RMSMREV	DDQ
TBB-1	220	PTYGDLNHLV	SLTMSGVTTC	LRFPGQLNAD	LRKLAVNMVP	FPRLHFFMPG	FAPLSAKGAQ	AYRALTVAEL	TQQMFDAKN	MMAACDPRHG	RYLTVAAMFRG	RMSMREV	DEQ
TBB-2	220	PTYGDLNHLV	SLTMSGVTTC	LRFPGQLNAD	LRKLAVNMVP	FPRLHFFMPG	FAPLSAKGTQ	AYRALTVAEL	TQQMFDAKN	MMAACDPRHG	RYLTVAAMFRG	RMSMREV	DEQ
TBB-4	220	PTYGDLNHLV	SMTMSGVTTC	LRFPGQLNAD	LRKLAVNMVP	FPRLHFFMPG	FAPLTSRGSQ	QYRSLTVPEL	TQQMFDAKN	MMAACDPRHG	RYLTVAAMFRG	RMSMKEV	DEQ
TBB-6	221	VTYGDLNHLA	SLALSGITTF	QRFKGNLKTD	IRKL-NTAGS	PRLHFFMTSF	APVYGKGIID	CQAFSISDLT	QQVLDAKNI	M-TCNHNQGK	FLSSAIIYRGQ	Q tek kda	E-Q
MEC-7	220	PTYGDLNHLV	SATMSGVTTC	LRFPGQLNAD	LRKLAVNMVP	FPRLHFFMPG	FAPLTSRSNQ	QYRAITVPEL	TQQCFDAKN	MMAACDPRHG	RYLTAAAIFRG	RMSMKEV	DEQ
			sb158: Stop			sb154: Stop							
DEN_1	220	MMNIVONIZNICC		VUALCOTODD	CIVMCAUETC		DICEOFTAME		CECMDEMEE	TEAFONIMNDI	VOEVOOVOENT	λ	
	220	MI CUONENSS	IFVEWIFNNV	KIAVCDIPPR	GLAMBAIFIG	NSTATUELER	RISEQUIAME	RECAPTION II	GEGMDEMER	TEAESIMMIDL	VSEIQQIQEAI.	⊐ ⊼	
	220		TEVENTENNV	NIAVCDIPPR	CI KMAATEVG	NOUVIOLIEV	LISEAL TAME	NUNAL TUMAN	GEGMDEMEF		TOEIQQIQEAL	⊼	
	220		IFVEWIENNV	MIAVCDIPPR	GUNMAAIFVG	NOUNTOFIER	RISEVEIAME	KKNAF LAWIT	GEGMDEMER	TEAESINMINDL	LOCIQUIQEAT	A	
	33U 330	MLNVQNKNSS	IFVEWIPNNV	NEDVODIPPR	GVKMAATFVG	NOTALVELEK	RISEVETAME	KKKAF LHWYT	GEGMDEMEF	IEAESINMINDL	V SE IQQIQEAT	H	
TBB-0	3∠8 220	IISVENEDPS	LMIESLEKST	MIDVCDIPSR	GLKTSATFIA	INSTALVEPLK	RISKUPAGLE	KKKAF LHWYT	MEESEF	IDAENKVNDL	ISEFQQIEKVH	J	
MEC-/	330	MLNIQNKNSS	IFVDWIPNNV	KTAVCDIPPR	GLKMSATF1G	NSTALQELFK	KISEQFTAMF	KKKAF.THMA.I.	GEGMDEMEF	TEAESNMNDL	VSEYQQYQEAA	A	

Supplemental Figure 3

Supplemental Figure 3 Alignment of BEN-1 with the other *C. elegans* β -tubulins. Positions of the ABZ mutants that we isolated are shown in black along with the canonical allele *e1880*. Boxed residues are frequently mutated in parasitic nematodes. Underlined alleles are found in BZ resistant mutants of other organisms. Green indicates alleles found in the Million Mutant Project and purple denotes the change in *tbb-2(qt1)*. Note that numbering is altered for TBB-6 due to an insertion at 219 relative to other tubulins. Sequences are truncated to exclude the non-conserved C-terminal regions.

Supplemental Table 1. Strain genotypes

			ben-1	sequence
			DNA ^a	Protein
HR1988	N2, wild type	Parent of HR1991-HR2026		
ECA883	ben-1(ean65)	CRISPR induced deletion	exon 2-4 deletion	
CB3474	ben-1(e1880)	canonical allele, same codon as <i>sb145</i>	G1326A	G104D
HR1158	tbb-1(gk207)	null allele, deletion, outcrossed 6 times		
HR1987	tbb-1(gk207) ben-1(e1880)	non-Unc		
HR1133	tbb-2(gk129)	null allele, deletion, outcrossed 10 times		
HR2038	tbb-2(gk129)	HR1138 isolate, parent of HR2037-HR2041		
HR1974	tbb-2(gk129) ben-1(e1880)	Unc		
HR1986	tbb-1(gk207) tbb-2 (gk129)/qC1 ^b			

HR1958	tbb-1(gk207) tbb-2(gk129) ben-1(e1880)/qC1 ^b			
HR1991	ben-1(sb143)	Duplicate of HR2007/sb159	G1659A	E198K
HR1993	ben-1(sb145)	Selected on 25 uM ABZ, same codon as <i>e1880</i>	G1325A	G104S
HR1994	ben-1(sb146)	Selected on 25 uM ABZ	G1340A	G109R
HR1995	ben-1(sb147)	Duplicate of HR1994/sb146	G1340A	G109R
HR1997	ben-1(sb149)	Selected on 25 uM ABZ	G2032A	C303Y
HR1998	ben-1(sb150)	Selected on 25 uM ABZ	G1277A	D88N
HR2056	ben-1(sb151)	Selected on 25 uM ABZ, 5 backcrosses	G1846A	R241H
HR2000	ben-1(sb152)	Selected on 25 uM ABZ	C91T	Q31stop
HR2001	ben-1(sb153)	Selected on 25 uM ABZ	G2284A	Splice donor ^c
HR2002	ben-1(sb154)	Selected on 25 uM ABZ	С2247Т ^b	Q375stop
HR2003	ben-1(sb155)	Selected on 25 uM ABZ	C1813T	S230F
HR2004	sb156	Selected on 25 uM ABZ, Dpy Unc on ABZ	N/A	N/A

HR2005	ben-1(sb157)	Selected on 7.5 uM ABZ	C1872T	L250F
HR2006	ben-1(sb158)	Selected on 7.5 uM ABZ	G2156A	W344stop
HR2007	ben-1(sb159)	Duplicate sb143/HR1991	G1659A	E198K
HR2026	ben-1(sb144)	Selected on 25 uM AB, same codon as <i>sb164</i> , 6 backcrosses	G1440A	G142E
HR2037	ben-1(sb163) tbb-2(gk129)	Non-Unc, selected on 7.5 uM ABZ		
HR2039	ben-1(sb164) tbb-2(gk129)	Unc, selected on 1.5 uM ABZ		
HR2040	ben-1(sb163)	Derived from HR2037, 6 backcrosses	C1203T	A63V
HR2041	ben-1(sb164)	Derived from HR2039, same codon as <i>sb144</i> , outcrossed 1 time	G1439A	G142R
HR2052	sb165	Unc with <i>tbb-2</i> . Selected on 1.5 uM ABZ with <i>tbb-2</i>	likely ben-1 ^d	
HR2053	sb166	Unc with <i>tbb-2</i> . Selected on 7.5 uM ABZ with <i>tbb-2</i>	likely ber	<i>a-1</i> ^d

HR2051	sb167	Unc with <i>tbb-2</i> . Selected on 7.5 uM ABZ with <i>tbb-2</i>		1 ^d
HR2054	sb168	Unc with <i>tbb-2</i> . Selected on 7.5 uM ABZ with <i>tbb-2</i>	likely ben	1 ^d
HR2050	sb169	Unc with <i>tbb-2</i> . Selected on 25 uM ABZ with <i>tbb-2</i>	likely ben-	1 ^d
VC20512	ben-1(gk332957)	Million Mutant Project Variant found in <i>tbb-6</i> , partial ABZ resistance	G1227A	G71E
VC20620	ben-1(gk358233)	Million Mutant Project, variant found in <i>tbb-6, tbb-4,</i> <i>mec-7</i> , ABZ sensitive	G2995A	R324K
SP1742	tbb-4(sa127)	ABZ sensitive		L253F
CB1477	mec-7(e1343)	ABZ sensitive		P171L
HC48	<i>tbb-2(qt1)</i>	E198K corresponds to <i>sb159</i> in <i>ben-1</i>		

^a Relative to the A of the ATG start codon encoded in the unspliced message, which corresponds to nucleotide 3541593 of chromosome III.

^b qC1 is a homozygous sterile balancer chromosome containing dpy-19.

^c If intron 4 following amino acid 157 is translated due to a failure to splice, a stop codon follows after 54 amino acids. Includes a synonymous change of T3266C.

^d Likely *ben-1* mutations as they are Unc off of ABZ with *tbb-2*, as are other *ben-1* alleles.

Crossovers to separate resistance from the Unc phenotype were rare, consistent with the

map distance of ~2 cM between *ben-1* and *tbb-2*.

Supplemental Table 2. Mutant screens

Parent	ABZ (µM)	Gravid F1	Number of stains
	7.5	140 ^a	1
Wild-type	7.5	410 ^b	1
Jacob Spre	25	3,960 ^a	12 °
	50	240 ^a	
	haploid genomes	9,500	
ben-	<i>l</i> mutations/gamete	1/730	
tbb-2	1.5	1,275	1
	7.5	3,775	1
	haploid genomes	10,100	
ben-	<i>l</i> mutations/gamete	1/5050	
tbb-2	1.5	12,280	1 ^d
	3	2,060	
	7.5	3,620	3 ^d
	25	6,470	1 ^d

	50	1,350	
	haploid genomes	51,560	
ben-1	mutations/gamete ^c	1/10310	

* Gravid F1 were grown from mutagenized worms in the absence of drug and 20-30 were picked to each ABZ plate. In all other cases, mutagenized worms were directly plated on ABZ and

gravid F1's present a week later were counted from a sampling of plates.

^b Mutagenized animals were picked directly to ABZ plates.

^c Excludes *sb156*, which has no coding changes in *ben-1*.

^d Likely *ben-1* mutations as they are Unc off of ABZ with *tbb-2* as are other *ben-1* mutations. Crossovers to separate resistance from the Unc phenotype were rare, consistent with the map distance of \sim 2 cM between *ben-1* and *tbb-2*.