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Abstract

Anthelmintic drugs are used to treat parasitic roundworm and flatworm infections in humans

and other animals. Caenorhabditis elegans is an established model to investigate anthel-

mintics used to treat roundworms. In this study, we use C. elegans to examine the mode of

action and the mechanisms of resistance against the flatworm anthelmintic drug praziquan-

tel (PZQ), used to treat trematode and cestode infections. We found that PZQ inhibited

development and that this developmental delay varies by genetic background. Interestingly,

both enantiomers of PZQ are equally effective against C. elegans, but the right-handed

PZQ (R-PZQ) is most effective against schistosome infections. We conducted a genome-

wide association mapping with 74 wild C. elegans strains to identify a region on chromo-

some IV that is correlated with differential PZQ susceptibility. Five candidate genes in this

region: cct-8, znf-782, Y104H12D.4, Y104H12D.2, and cox-18, might underlie this variation.

The gene cct-8, a subunit of the protein folding complex TRiC, has variation that causes a

putative protein coding change (G226V), which is correlated with reduced developmental

delay. Gene expression analysis suggests that this variant correlates with slightly increased

expression of both cct-8 and hsp-70. Acute exposure to PZQ caused increased expression

of hsp-70, indicating that altered TRiC function might be involved in PZQ responses. To test

if this variant affects development upon exposure to PZQ, we used CRISPR-Cas9 genome

editing to introduce the V226 allele into the N2 genetic background (G226) and the G226

allele into the JU775 genetic background (V226). These experiments revealed that this vari-

ant was not sufficient to explain the effects of PZQ on development. Nevertheless, this

study shows that C. elegans can be used to study PZQ mode of action and resistance mech-

anisms. Additionally, we show that the TRiC complex requires further evaluation for PZQ

responses in C. elegans.
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Introduction

Praziquantel (PZQ) is an anthelmintic drug used to treat platyhelminth infections, including

schistosomiasis in humans [1, 2]. Schistosomiasis is caused by an infection with one of six schis-

tosome species (Schistosoma guineensis, S. haematobium, S. intercalatum, S. japonicum, S. man-
soni, and S. mekongi) and affects over 250 million people in 2021 alone [3]. Preventative

treatment with PZQ in areas where schistosomes are endemic is part of the World Health Orga-

nisation’s recommendation for control and ultimate elimination of human schistosomiasis [3].

PZQ is the only drug currently available to treat infections in humans, and PZQ resistance in

schistosomes is not widely reported at present [4, 5]. However, with the increase in mass drug

administration (MDA) programs, selection for PZQ resistance increases and will cause

decreased efficacy over time. Indeed, a study of genetic diversity in S. mansoni after MDA

showed that long-term PZQ exposure selected for putative resistance loci across the genome,

although these signatures of selection did not appear linked to a resistance phenotype [5].

Because of the threat that resistance poses for sustained treatment efficacy, it is important

to study the genetic basis of resistance, both to identify resistant populations and to prevent

their spread [6]. Calcium ion transporters have long been the focus of PZQ mode of action

and resistance studies [7–10], and recently, the transient receptor potential melastatin ion

channel in S. mansoni (Sm.TRPMPZQ) has been identified as a molecular target of PZQ and

linked to variation in PZQ sensitivity [11, 12]. However, this identification hinged on one lab-

oratory selected line, and the involvement of Sm.TRPMPZQ in resistance against PZQ treat-

ment has not yet been corroborated in natural populations. Importantly, multiple mechanisms

can lead to resistance. More studies are needed to understand the genetic basis of resistance in

natural populations [5].

Conducting studies on natural genetic variation and its role in helminth responses is com-

plicated because of their host-dependent life cycles and a limited experimental toolbox [13].

The free-living nematode Caenorhabditis elegans is a well established model to study anthel-

mintic modes of action and resistance [14–19] because of its tractable life cycle, small and fully

characterized genome, and the availability of genome-editing tools [20]. Although C. elegans is

a nematode and PZQ is typically used to target platyhelminth infections or external parasites,

C. elegans has previously been used to test hypothesis that can be relevant in the context of

PZQ action, including heterologous expression of voltage-operated Ca2+ channels [21].

In this study, we explored whether an established high-throughput development assay of C.

elegans [15, 22, 23] can be used as a model to study the natural variation of susceptibility to

praziquantel. We performed dose-response analyses with the racemic mixture as well as the

right- and left-handed enantiomers, given that the right-handed enantiomer ((R)-PZQ) is

more effective at fighting schistosome infections in vivo and in vitro [reviewed in 8]. Addition-

ally, we conducted a genome-wide association mapping with 74 wild C. elegans strains to

detect regions of the genome that are correlated with variation in PZQ susceptibility. We used

CRISPR-Cas9 genome editing as well as gene expression analysis to study the role of the candi-

date gene cct-8 in PZQ susceptibility. Our results show that C. elegans development is affected

by PZQ. In the future, the identification of candidate genes in C. elegans and their orthologs in

schistosomes could aid the study of PZQ resistance of natural schistosome populations.

Materials and methods

Strains

Animals were grown on nematode growth media agarose (NGMA) plates with 1% agar and

0.7% agarose and were fed E. coli OP50 bacteria prior to drug-response testing [24]. The
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laboratory strain N2 and wild strains (CB4856, DL238, and JU775) from the C. elegans Natural

Diversity Resource (CeNDR) were used to study the responses to multiple doses of praziquan-

tel (PZQ). A total of 74 C. elegans strains were used for genome-wide association mapping,

including CB4856, DL238, JU775, and N2. Two allele-replacement strains were generated and

tested: ECA485 cct-8(ean8) in the N2 background and ECA601 cct-8(ean39) in the JU775

background.

High-throughput PZQ response assay

The phenotypic response to PZQ was measured as described previously [15, 23, 25, 26]. In

summary, the strains were cultured for four generations in uncrowded conditions to avoid the

induction of dauer, bleach synchronized, and titered in K medium [27] at a concentration of

one embryo per μL for a total volume of 50 μL per well of a 96-well plate. The day after bleach

synchronization, hatched L1s were fed E. coli HB101 bacterial lysate (Pennsylvania State Uni-

versity Shared Fermentation Facility, State College, PA; [28]). After feeding, nematodes were

grown at 20˚C for 48 hours with constant shaking. Three L4 larvae were then sorted into new

microtiter plates containing K medium, 10 mg/mL HB101 lysate, 50 μM kanamycin, and

either 1% DMSO or PZQ dissolved in 1% DMSO. For the four strain assay, 1 mM PZQ race-

mate was dissolved in 1% DMSO. For the two strain assay, PZQ racemate, (R)-PZQ, and (S)-

PZQ concentrations were 0.25, 0.5, 1, 2, and 3 mM in 1% DMSO (Supercritical Fluid Chroma-

tography separation report for enantiomers S1 Fig). After sorting, animals were cultured and

allowed to reproduce for 96 hours at 20˚C with constant shaking. For accurate nematode

length measurements, the samples were treated with 50 mM sodium azide (in M9) to

straighten their bodies before analysis using the COPAS BIOSORT. The COPAS BIOSORT is

a large particle flow measurement device, which measures time of flight (TOF) and extinction

(EXT) of objects passing through the flow cell using laser beams. TOF, representing animal

length, and EXT, representing optical density of the animal, are both proxies for animal devel-

opment because animals get longer and more dense during development. For this study, ani-

mal optical density is corrected for animal length for each object in each well, which provides a

normalized developmental phenotype (norm.EXT). If praziquantel, either the racemate or the

enantiomers, negatively affects animals, they are expected to have a smaller norm.EXT. Raw

phenotypic data were processed for outliers and analyzed using the R package easysorter [29]

as described previously [15]. The reported phenotype is median norm.EXT values for each

replicate well. Because the drug solvent, DMSO, has been shown previously to affect C. elegans
traits including development [22] all phenotypic values were normalized by deducting the

average median norm.EXT value in PZQ conditions from the average median norm.EXT

value in control (1% DMSO) conditions. To test if the effects of PZQ and its enantiomers on

development differed, a two-way ANOVA and post hoc Tukey HSD test were used, including

the interaction between drug type and strains (R package rstatix, version 0.7.0).

Genome-wide association mapping

Normalized median optical density measurements were collected from populations of 74 wild

C. elegans strains in control (1% DMSO) or praziquantel (1 mM PZQ in 1% DMSO) condi-

tions using the high-throughput PZQ response assay described above. A genome-wide associa-

tion mapping was performed using the phenotypes of the 74 wild strains by running the

NemaScan pipeline (https://github.com/AndersenLab/NemaScan). Single-nucleotide variants

(SNVs) that were present in fewer than 5% of the tested strains were removed from the analy-

sis. SNVs with calculated p-values greater than the Bonferroni-corrected significance threshold

(alpha = 0.05) were considered significant.
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eQTL—mediation

To test if expression of genes in the quantitative trait region (QTL) detected with genome-

wide association mapping affected the responses to PZQ across 74 wild C. elegans strains, we

conducted mediation analysis [as described in 30]. In short, we used the genotype at the QTL

peak for normalized median optical density measurements, transcript expression traits that

have eQTL overlapped with the phenotype QTL, and the PZQ phenotypic response as inputs

to perform mediation analysis using the medTest() function and 1000 permutations for p-

value correction in the R package MultiMed (v2.6.0) (https://bioconductor.org/packages/

release/bioc/html/MultiMed.html).

Expression of hsp genes and cct-8 after 96 hours of development in PZQ or

control conditions

To quantify expression of cct-8 and heat shock proteins hsp-16.2 and hsp-70, the HTA assay

described above was adjusted to generate sufficient numbers of nematodes for RNA extraction.

Instead of 96-well plates, 12-well plates (Genesee, 25–101) were used. After four generations of

plate culturing in uncrowded conditions and bleach synchronization, embryos were titered in

K medium at a concentration of half to one embryo per μL for a total volume of 1 mL per well.

The day after bleach synchronization, hatched L1s were fed HB101 bacterial lysate. After feed-

ing, nematodes were grown at 20˚C for 48 hours with constant shaking. Sixty L4 larvae were

then transferred into new 12-well plates containing K medium, 10 mg/mL HB101 lysate,

50 μM kanamycin, and final concentration of either 1% DMSO or 1 mM PZQ dissolved in 1%

DMSO. Animals were then cultured and allowed to reproduce for 96 hours at 20˚C with con-

stant shaking. After 96 hours, the content of the wells was collected, washed with M9 twice,

before 1 mL of Trizol (Thermo Fisher, 15596018) was added to the samples. The samples were

then split into two technical replicates each and Trizol added to 1 mL total per microfuge tube.

The samples were frozen at -80˚C until RNA extraction.

RNA was extracted for one of the technical replicates per biological sample as follows. To

disrupt the tissue, 100 μL sand (Sigma, 274739) was added and the samples vortexed vigorously

for ten minutes at room temperature (RT). 200 μL chloroform was then added and the sample

vortexed for three minutes and spun at full speed for three minutes. The aqueous layer

(~500 μL) was transferred to a new tube and 500 μL of isopropanol was added. Samples were

briefly vortexed and incubated for eight minutes at RT before being transferred to ice for two

minutes. Samples were then centrifuged at full speed for ten minutes and the supernatant

removed. 1 mL freshly made 75% ethanol was added and the samples vigorously vortexed and

centrifuged at full speed for three minutes. After removing the supernatant the samples were

centrifuged another 30 seconds at full speed to collect and remove residual ethanol. The sam-

ples were air dried, resuspended in 40 μL RNase-free water. 20 μL was frozen at -80˚C for lon-

ger term storage, and 20 μL was used for quantification and stored at 20˚C for subsequent

cDNA synthesis. RNA concentrations were measured with a Qubit XR assay kit (Invitrogen,

Q33224). cDNA was synthesized with the iScript Reverse Transcription Supermix for RT-

qPCR (Bio-Rad, 1708841), following the manufacturer’s protocol. Real-time PCR was con-

ducted with the iTaq Universal SYBR Green Supermix kit (Bio-Rad, 1725121) using the manu-

facturer’s protocol and reaction parameters for the QuantStudio3 (Applied Biosystems), and

an annealing temperature of 60˚C for all primer sets. All primers were designed to anneal to

neighboring exons to prevent amplification from genomic DNA (S1 Table). In addition to 24

samples, each plate contained a standard curve, a calibrator sample, and two negative controls

(one cDNA synthesis reaction without reverse transcriptase and one with water instead of

sample). Each biological sample was run in technical triplicate.
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Expression data (Cp values) were exported from the QuantStudio3 software and analyzed

in R. For each triplicate, outliers were excluded if the crossing point values (Cp) differed by

more than 0.5 cycles and the standard deviation was over 0.2. After exclusion of outliers, the

average Cp value was calculated per sample and used for further analysis. The standard curves

were used to calculate relative concentrations for each sample and gene based on the Cp. To

calculate a normalized expression (ΔCT) the concentration of the target gene was divided by

the concentration of the endogenous control rpl-26 [31]. To calculate the relative normalized

expression (ΔΔCT) between different plates of the same gene, the normalized expression of the

samples was divided by the normalized expression of the calibrator. The effect of treatment

(PZQ or control) and strain (N2 and JU775) on expression of cct-8, hsp-16.2, and hsp-70 was

tested using a two-way ANOVA, including the interaction between treatment and strain and

the effect of plate (R package stats, version 4.1.2). Before analysis, outliers were excluded by

removing any values above or below two standard deviations from the mean. For cct-8, a plate

effect was detected, and both plates were subsequently analyzed independently.

qPCR experiment to determine hsp induction after RNAi treatment

A population of the N2 strain was grown as previously described and grown on bacterial plates

containing E. coli expressing: L4440 empty vector, act-1 RNAi, cct-8 RNAi, or act-1 and cct-8
RNAi. The populations were grown for 48 hours and then placed in 2% DMSO or 4 mM prazi-

quantel (2% DMSO) for eight hours. RNA was then extracted using a standard Trizol and

chloroform extraction [32]. Purified RNA was treated with DNAse I, pelleted, and resus-

pended in water. RNA was synthesized into cDNA using first-strand synthesis (Bio-Rad iScript

Advanced cDNA Synthesis Kit for RT-qPCR, 1725037). qPCR was then performed as previ-

ously described [32] using custom primers (S1 Table). Amplification of the 18S region was

used to ensure the measurements were in the linear range and amplification of hsp-16.2 tran-

scripts were used to measure heat-shock induction. Expression levels of hsp-16.2 and hsp-70
after treatment with RNAi or PZQ were tested using an ANOVA and post hoc Tukey HSD test

(R package rstatix, version 0.7.0).

Generation of genome-edited strains

Genome-edited allele replacement strains were generated with a dpy-10 co-CRISPR strategy

[33]. ALT-R and tracrRNA were purchased from IDT (Skokie, IL) (S2 Table). The tracrRNA

(IDT, 1072532) was injected at a final concentration of 13.6 μM. The crRNA for dpy-10 was

injected at 4 μM, and the crRNA for cct-8 was injected at 9.6 μM. The repair single-stranded

oligonucleotide repair templates were injected at 1.34 μM for dpy-10 and 4 μM for cct-8. Puri-

fied Cas9 protein (IDT, 1074182) was injected at final concentration 23 μM. Injection mixtures

were generated by combining the tracrRNA and crRNAs and incubating them at 95˚C for five

minutes and 10˚C for 10 minutes. Then, Cas9 was added and an additional five-minute room

temperature incubation was performed. Following these incubations, repair templates and

nuclease-free water were added to the injection mixture. This mixture was then loaded into a

pulled microinjection needle (World Precision Instruments, 1B100F-4). Injected animals were

singled onto 6 cm NGMA plates and allowed to produce offspring. These offspring were

screened for Rol or Dpy phenotypes. Individuals showing the desired phenotypes were singled

to new 6 cm NGMA plates and allowed to produce offspring. Then, the cct-8 region

(oECA1155 and oECA1157) of the F1 Rol or Dpy parents were amplified using PCR. The PCR

product was digested with the NlaIV restriction enzyme and differential restriction patterns

were identified. Parents with the desired restriction pattern were then Sanger sequenced to
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verify homozygous edits, and the dpy-10 mutation was crossed out of the strain. Custom prim-

ers, guides, and repair templates were used (S2 Table).

Results and discussion

The racemic mixture and both enantiomers of PZQ affect C. elegans
development

To test if PZQ has an effect on the nematode C. elegans, we assayed nematode development in

response to racemate PZQ. Development was measured for thousands of animals using a pre-

viously developed high-throughput assay (HTA) (see 2.2) [15, 23, 25, 26, 34–38]. In summary,

three L4 larvae were sorted into each well of a 96-well plate in the presence of DMSO or PZQ

dissolved in DMSO. In the next 96 hours, these larvae grew and reproduced, and their off-

spring developed. After 96 hours, animal length (time of flight, TOF) and optical density

(extinction, EXT) were measured for every animal of the population in each well as a proxy for

development [22]. Animals grow longer and more dense over time, and toxic drug treatments

slow this development. Therefore, if PZQ is detrimental to C. elegans, animals are expected to

be shorter and less optically dense after 96 hours. Here, we report the median optical density

normalized for animal length as the phenotype (median.norm.EXT). At doses of 1 mM and

higher, PZQ inhibits development of four genetically distinct strains (S2 Fig.). The Hawaiian

strain CB4856 is sensitive to PZQ treatment compared to the laboratory strain N2, whereas the

Portuguese strain JU775 is less affected than the N2 strain. Although PZQ is administered to

both humans and animals as a racemic mixture, the left-handed PZQ ((S)-PZQ) is more effec-

tive at fighting schistosome infections in vivo and in vitro [reviewed in 8]. In a subsequent

assay, the N2 and JU775 strains were subjected to racemate PZQ as well as to both enantio-

mers. The enantiomers are equally as potent as the racemate and inhibited development of

both strains up to a dose of 1 mM, after which the enantiomers were slightly less potent than

the racemate, but no difference was found between the two enantiomers (Fig 1, S3 and S4

Tables). The schistosome drug target Sm.TRPMPZQ has no known orthologs in C. elegans [39,

40], which in combination with enantiomer activity could imply a different mode of action in

nematodes, suggesting a reason why both enantiomers might be active. Further studies on the

mode of action and drug target of PZQ in natural populations of both species will determine

the relevance of C. elegans as a model for schistosome responses to PZQ. Regardless, the

reported effectiveness of PZQ in inhibiting development of C. elegans suggests optimization of

PZQ could be explored for anthelmintic treatment of nematodes.

Genome-wide association mapping of 74 wild isolates implicates a region

on chromosome IV in the response to PZQ

The observed variation in responses to PZQ across four wild strains (S1 Fig) suggested that

genetic variation of these strains could underlie the differential responses. To further study the

effect of genetic variation on PZQ susceptibility, development of 74 wild C. elegans strains was

quantified in 1 mM of PZQ in 1% DMSO or in control conditions (1% DMSO) with the same

HTA as described for the dose responses. Because the PZQ racemate and its enantiomers had

similar effects at 1 mM in the dose response assay, the racemate was used in this experiment.

We performed a genome-wide association (GWA) mapping and identified a quantitative trait

locus (QTL) on the left arm of chromosome IV (position 845,848 to 1,313,281) (Fig 2A). In

this set of 74 strains, the N2 strain was more susceptible than the JU775 strain, as was observed

in the initial dose response (Fig 2B, S2 Fig.). Fine mapping of this region shows 58 genes are

contained in the QTL, of which 15 genes have a -log10(p) of over 10, and five genes a -log10(p)
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greater than 13.5 (S5 Table, Fig 2C). Two of these genes, cct-8 and znf-782, have missense vari-

ants in the JU775 strain, respectively G226V (cct-8), and Q617H and H563D (znf-782). The

missense variant in cct-8 is likely to affect protein function. This G226V variant was found in

many wild C. elegans strains, including JU775, suggesting that the valine at position 226 might

reduce PZQ sensitivity. cct-8 encodes a subunit of the TRiC complex, which has essential roles

in the folding of a large number of proteins, including actin [41].

Expression analysis of cct-8 further implicates it in the C. elegans response

to PZQ

The TRiC complex is essential for the proper folding of actin and many other cellular proteins.

Disruption of the TRiC complex leads to actin misfolding and activation of a cellular pathway

known as the heat-shock response [42]. To investigate if the C. elegans response to PZQ

involved the disruption of the TRiC complex, we first measured the expression of cct-8, hsp-
16.2, and hsp-70 in the N2 and JU775 strains in control conditions and after PZQ treatment (1

mM PZQ in 1% DMSO), with the expression of rpl-26 serving as a control. The rationale for

testing cct-8 in addition to hsp expression is that if the genetic variant does not cause the differ-

ence in susceptibility to PZQ, it might be a difference in expression. Alternatively, if the variant

renders the protein less active, overexpression could be a mechanism to compensate for the

partial loss of function. A significant effect of strain but not condition was detected for cct-8
expression (Fig 3A, S6 Table). Expression was higher in the less susceptible strain JU775 both

with and without treatment. Expression of hsp-16.2 did not differ between strains or condi-

tions, and hsp-70 was expressed differentially between the strains but again not affected by

treatment (Fig 3A, S6 Table). These data imply that the JU775 cct-8 allele (G226V) requires

Fig 1. Praziquantel affects C. elegans development. Dose response for the N2 (orange) and JU775 (purple) strains in

praziquantel (PZQ), (S)-PZQ, and (R)-PZQ. The y-axis represents development measured as median optical density

normalized for animal length. Linetype indicates the type of drug: solid = PZQ racemate, long dash = (S)-PZQ, and

short dash = (R)-PZQ.

https://doi.org/10.1371/journal.pone.0286473.g001
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higher expression in order to elicit sufficient function of the TRiC complex. This higher

expression of cct-8 in turn might lead to internal stress and an upregulation of hsp-70, although

PZQ treatment itself does not promote further upregulation of this stress response.

Next, we tested if acute PZQ exposure at a higher dose (4 mM PZQ in 2% DMSO) for eight

hours affects hsp expression in the N2 strain [43]. We observed that individuals showed a sig-

nificant increase in expression of hsp-16.2 after cct-8-RNAi treatment and a non-significant

increase after PZQ treatment (Fig 3B). Furthermore, the knockdown of act-1 to reduce the

level of misfolded proteins in combination with RNAi of cct-8 or PZQ treatment had a less

severe heat-shock response than cct-8 knockdown or PZQ treatment alone (Fig 3B). This

trend offered some support to our hypothesis that PZQ might alter the function of TRiC and

that cct-8 might play a role in PZQ sensitivity.

Finally, we looked at expression of genes in the QTL on chromosome IV to see if mediation

might affect the response to PZQ. Mediation analysis tests if expression of the genes in a QTL

is mediated by genomic variation either close to (local eQTL) or farther away from (distant

eQTL) the focal gene. None of the genes in this region, including cct-8, showed significant

mediation (S5 Table). These data suggest that the regulation of gene expression by genetic var-

iation elsewhere in the genome did not contribute to the differences in PZQ responses across

the 74 strains studied here.

Fig 2. A) Genome-wide association mapping results for median normalized optical density (median.norm.EXT)

across 74 wild strains. The genomic position (x-axis) is plotted against the -log10(p) value (y-axis) for each SNV.

Legend: dots: SNV, red dot: SNV passes the genome-wide Bonferroni significance threshold designated by the gray

line. B) At the SNV with the highest -log10(p) value (position 1,169,239), genotypes are split based on the presence of

the reference allele (REF) or the alternative allele (ALT). The y-axis shows development measured as median optical

density normalized for animal length (median.norm.EXT) with each point representing the average median.norm.

EXT response of a single wild strain. The N2 strain is shown in orange, and the JU775 strain is shown in purple. These

strains are also indicated with a corresponding arrowhead. C) Fine mapping of variants in the QTL on chromosome

IV. The genomic position is shown on the x-axis, and the -log10(p) values for variants are shown on the y-axis. Genes

within the region are shown as rectangles and colored by the strand (turquoise = + strand, purple = —strand). Variants

(amino acid changes) with a predicted moderate impact on gene function are shown in orange, and variants with a

predicted high impact on gene function (frame-shift, stop-gain, start-loss) are shown in red. The gene cct-8 is labeled

on the plot directly left of the corresponding rectangle for the gene.

https://doi.org/10.1371/journal.pone.0286473.g002
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Variation at cct-8 codon 226 does not explain differential PZQ responses

between the N2 and JU775 strains

To test the hypothesis that the G226V allele is involved in reduced sensitivity to PZQ, we used

CRISPR-Cas9 genome editing to introduce the V226 allele into the N2 genetic background

and the G226 allele into the JU775 genetic background (Fig 4A, 4B). We then measured PZQ

responses for both parental strains and both genome-edited strains using the high-throughput

assay. We found that this variant does not underlie the phenotypic differences between the N2

and JU775 strains (Fig 4C). We looked for gene duplications or deletions in the JU775 strain

relative to the N2 strain as an alternate source for variation in the TRiC complex, but found no

evidence of this copy-number change. Taken together with the various types of expression

data, cct-8 is a candidate for PZQ mode of action and mechanisms of resistance in C. elegans,
but further studies are needed to reach a more definitive conclusion.

Fig 3. A) Expression of cct-8, hsp-16.2, and hsp-70 in control conditions (black) and PZQ (gray) in the strains N2 and

JU775. The biological samples were spread over two 96-well plates per gene (triangles and circles). B) Expression of

hsp-16.2 and hsp-70 after treatment with RNAi or praziquantel (PZQ) in the strain N2. *, **, and *** indicate p-values

of less than 0.05, 0.01, and 0.001, respectively.

https://doi.org/10.1371/journal.pone.0286473.g003
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C. elegans as a potential model for PZQ responses in schistosomes

The CCT/TRiC pathway identified in this study as potentially involved in PZQ responses is

conserved across eukaryotes [45] orrelating variation in schistosome orthologs of TRiC com-

ponents to PZQ susceptibility merits further study of this pathway in C. elegans and might

yield interesting hypotheses for schistosomes studies. Although not a CCT/TRiC specific

response, it is interesting to note that a PZQ-induced upregulation of heat shock proteins has

also been observed in schistosomes [46–48].

Regarding the established hypothesis that TRPM affects schistosome PZQ susceptibility, C.

elegans has TRPM channels [49], but no clear orthologs of the schistosome drug target Sm.

TRPMPZQ exist [39, 40]. Therefore, the mechanism of this specific target cannot be tested

using C. elegans as a model for PZQ responses. However, as noted by Cotton and Doyle [6],

the Sm.TRPMPZQ was found in one genetic background [11, 12]. In this study, we started with

74 wild strains, which by no means captures the variation present in the global C. elegans pop-

ulation [50, 51]. It is therefore conceivable that other molecular targets or modes of action

exist in either species and that orthologous genes or pathways are present [7]. Furthermore,

the trait used to determine sensitivity can affect strain responses [38, 52] and association map-

ping results. Maybe development is not the ideal trait to study in C. elegans, because PZQ effi-

cacy is age-dependent and less active against juvenile schistosomes [53, 54] and studying

lethality of adult nematodes might be a better comparison. Regardless of its use for schisto-

some PZQ studies, a better understanding of PZQ action in C. elegans could help optimize

PZQ as an anthelmintic for nematodes, capitalizing on its arsenal of high-quality wild strain

genomes and well developed protocols for genome-editing and genetic crosses, amongst other

techniques.

Fig 4. A) The gene model for the longest isoform of cct-8 is shown. Exons are shown in dark gray and introns as lines connecting the exons. The variant

G226V is shown on the exon where it is located. B) The amino acid sequences of the N2 and JU775 versions of CCT-8 are shown aligned around the region

containing the G226V variant. Figure made with ggmsa [44] C) Animal development measurements. Median optical density normalized for animal length

(median.norm.EXT) in 1 mM praziquantel is shown on the y-axis. The x-axis shows the strains tested: N2, ECA485 (N2 background with the JU775 allele in

cct-8), JU775, and ECA601 (JU775 background with N2 allele in cct-8). Each point represents the median.norm.EXT for a population of animals in the

presence of praziquantel normalized for their response in 1% DMSO. ns = not significant.

https://doi.org/10.1371/journal.pone.0286473.g004
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Conclusions

In this work, we describe the effect of PZQ on development of C. elegans, and the potential

mechanisms underlying resistance to PZQ in this nematode model. We explore genome-wide

variation to identify a genomic region on chromosome IV that is correlated with resistance,

but both genome engineering and gene expression of the candidate gene cct-8 do not provide a

conclusive hypothesis for the mode of action or resistance mechanism of PZQ. We propose

that TRiC function in the resistant strain JU775 is negatively affected, potentially caused by a

mutation in cct-8. This decreased function is compensated by increased expression of cct-8,

which causes higher baseline levels of internal stress as shown by increased hsp-70 expression.

The increased expression of hsp-70 in turn makes the JU775 strain more resilient to the stress

caused by subsequent PZQ treatment.
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