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The distribution of fitness effects of new mutations plays a central role in evolutionary biology. Estimates of the distribution of fitness 
effect from experimental mutation accumulation lines are compromised by the complete linkage disequilibrium between mutations 
in different lines. To reduce the linkage disequilibrium, we constructed 2 sets of recombinant inbred lines from a cross of 2 
Caenorhabditis elegans mutation accumulation lines. One set of lines (“RIAILs”) was intercrossed for 10 generations prior to 10 genera
tions of selfing; the second set of lines (“RILs”) omitted the intercrossing. Residual linkage disequilibrium in the RIAILs is much less than in 
the RILs, which affects the inferred distribution of fitness effect when the sets of lines are analyzed separately. The best-fit model esti
mated from all lines (RIAILs + RILs) infers a large fraction of mutations with positive effects (∼40%); models that constrain mutations to 
have negative effects fit much worse. The conclusion is the same using only the RILs. For the RIAILs, however, models that constrain mu
tations to have negative effects fit nearly as well as models that allow positive effects. When mutations in high linkage disequilibrium are 
pooled into haplotypes, the inferred distribution of fitness effect becomes increasingly negative-skewed and leptokurtic. We conclude 
that the conventional wisdom—most mutations have effects near 0, a handful of mutations have effects that are substantially negative, 
and mutations with positive effects are very rare—is likely correct, and that unless it can be shown otherwise, estimates of the distribution 
of fitness effect that infer a substantial fraction of mutations with positive effects are likely confounded by linkage disequilibrium.
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Introduction
The distribution of fitness effects (DFEs) of new mutations is of 
fundamental importance in numerous areas of evolutionary biol
ogy (Fisher 1930; Peck et al. 1997; Schultz and Lynch 1997; Orr 2000; 
Zhang et al. 2004), as well as having practical applications, includ
ing human genetic disease (Eyre-Walker 2010; Morrow and 
Connallon 2013; Boyle et al. 2017; Agarwal et al. 2023) and cancer 
(Durrett et al. 2010; Cannataro et al. 2016; Cannataro and 
Townsend 2018). The DFE can be estimated from data in 2 ways: 
indirectly from patterns of sequence variation within and be
tween species (Loewe and Charlesworth 2006; Boyko et al. 2008; 
Keightley and Eyre-Walker 2010; Kousathanas and Keightley 
2013; Kim et al. 2017; Tataru et al. 2017; Johri et al. 2020; Gilbert 
et al. 2021; James et al. 2023), or directly from comparisons between 
genotypes differing by a known (or estimated) set of mutations 

(Keightley 1994; Thatcher et al. 1998; Davies et al. 1999; Ramani 

et al. 2012; Böndel et al. 2019; Shen et al. 2022). Each method has 

strengths and limitations. Estimation from the standing variation 

incorporates a vastly larger number of mutations than could ever 

be assessed experimentally; the effects of very weak selection are 

detectable (at least in aggregate), and effects are integrated over 

the entire spectrum of environmental and genomic contexts ex

perienced by the organism in question. However, the method 

has several important limitations. First, the effects of selection 

must be jointly estimated with the effects of demography, which 

are necessarily greatly simplified for analytical tractability 

(Keightley and Eyre-Walker 2007; Li et al. 2012; Johri et al. 2020). 

Second, there is little information about the tail of the distribution 

for which the selection is strong on an evolutionary timescale but 

weak over the course of a few generations (s ≈ 1%) (Kousathanas 
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and Keightley 2013). Third, the method assumes there is a class of 
mutations that are selectively neutral to serve as a reference; the 
extent to which that assumption is met is an empirical issue re
quiring independent validation (Shen et al. 2022; Kruglyak et al. 
2023). Finally, there is no way to connect the DFE back to pheno
typic traits.

Direct estimation from fitness differences between known 
genotypes has the advantage of being conceptually unambiguous— 
if 2 groups differ by a single mutation and differ in fitness by some 
amount y, the effect of the mutation is y. Constructing 2 populations 
that differ by 1 or a few mutations is straightforward: known muta
tions can be introgressed or otherwise engineered (e.g. by CRISPR) 
into a common genetic background to provide “nearly isogenic lines” 
(NILs). Recent advances in CRISPR technology have made it possible 
to engineer large panels of NILs in yeast and other microbes 
(Sharon et al. 2018; Shen et al. 2022). However, constructing enough 
NILs to provide a meaningful estimate of the DFE remains a daunting 
proposition in multicellular organisms. Single-gene “knockout pa
nels”, in which genes are systematically inactivated and the fitness ef
fects documented, have been tremendously important in informing 
our understanding of the functional aspects of the genome (e.g. 
Thatcher et al. 1998; Kim et al. 2010; Ramani et al. 2012), but knockout 
mutations constitute only a small part of the mutational spectrum 
and do not provide an unbiased estimate of the DFE.

Mutation accumulation (MA) experiments, in which spontan
eous mutations are allowed to accumulate in the (near) absence 
of natural selection, provide the opportunity to estimate the DFE 
of a (nearly) unbiased set of mutations (Halligan and Keightley 
2009; Katju and Bergthorsson 2019). However, within an MA line, 
all mutations are in complete linkage disequilibrium, which ren
ders individual mutational effects inestimable.

Here we employ a classical line-cross strategy with MA lines 
to break down the linkage disequilibrium among the accumu
lated mutations. We then combine whole-genome sequencing 
with high-throughput competitive fitness assays to estimate 
the DFE of a set of 169 spontaneous mutations. This strategy 
was first employed by Böndel et al. (2019) with the unicellular 
green alga Chlamydomonas reinhardtii. We crossed 2 parental 
Caenorhabditis elegans mutation accumulation (MA) lines derived 
from the same genetically homogeneous ancestor to get F1 hy
brids that are segregating at all mutant loci. The F1s were recip
rocally crossed, and from the F2s we constructed 2 sets of 
recombinant inbred lines (Supplementary Fig. 1). For the first 
set, F2s were further crossed prior to inbreeding to construct a 
set of Recombinant Inbred Advanced Intercross Lines (RIAILs). 
For the second set, we omitted the intercrossing step and pro
ceeded directly to the inbreeding step; these lines are classical 
RILs. We refer to the full set of lines as RI(AI)Ls for brevity. 
RI(AI)Ls were assayed for competitive fitness against a marked 
competitor strain nearly isogenic for the ancestral genome and 
multilocus genotypes inferred by whole-genome sequencing at 
low (2–3×) coverage. The strategy is conceptually analogous to 
the QTL analysis, except the variant loci are not simply markers, 
but rather are the QTL themselves.

Materials and methods
Experimental methods
MA lines
The details of the MA experiment have been reported elsewhere 
(Baer et al. 2005). Briefly, 100 replicate lines were initiated from a 
single, highly inbred N2 strain hermaphrodite and propagated 

under standard laboratory conditions for a maximum of 250 gen
erations by transfer of a single immature hermaphrodite at 4-day 
intervals. Under this protocol the effective population size, Ne ≈ 1, 
and all but the most highly deleterious mutations are effectively 
neutral. The progenitor (G0) was cryopreserved at the outset of 
the experiment, and surviving MA lines were cryopreserved 
upon culmination of the MA phase.

Recombinant inbred (advanced intercross) lines
Two MA lines (MA530, n = 76 mutations and MA563, n = 93 muta
tions) were chosen as parents for a set of recombinant inbred ad
vance intercross lines (RIAILs) or simple recombinant inbred lines 
(RILs). The parental lines were chosen on the basis of their near- 
average decline in lifetime reproductive success (∼20%) over 4 as
says after 200 and 220 generations of MA at 2 different assay tem
peratures (20° and 25°) (Baer et al. 2006). The original plan was to 
construct a set of 600 RIAILs with 10 generations of intercrossing 
followed by 10 generations of selfing, using the “random pair mat
ing with equal contributions of each parent” design of Rockman 
and Kruglyak (2008; see their Figure 1). However, many crosses 
failed during the intercrossing phase, so we abandoned the 
intercrossing and completed the set of lines with RILs. The final 
set of 517 genotyped lines includes 192 RIAILs and 325 RILs. 
Details of the crossing schemes are given in Section I of the 
Supplementary Text 1.

Competitive fitness assays
To assay competitive fitness, an L1-stage focal strain worm and an 
L1 GFP-marked competitor (strain VP604) were placed together on 
a plate seeded with bacterial food and allowed to reproduce. Upon 
exhaustion of the bacterial food, worms were washed from the 
plate and counted using a Union Biometrica BioSorter. The nat
ural logarithm of the ratio of the frequencies of the 2 types, W =  
log[(p/1 − p)], is proportional to the difference in fitness between 
the focal strain (frequency = p) and the competitor strain (fre
quency = 1 − p) (Latter and Sved 1994). The assay is described in 
detail in Appendix 1 of Yeh et al. (2018) and summarized in 
Section II of the Supplementary Text 1.

Genome sequencing, variant calling, and genotyping
RI(AI)L genomes were sequenced at low (∼2–3×) coverage with 
150-bp paired-end Illumina sequencing, using standard methods. 
Details of sequencing and variant calling are given in Section III of 
the Supplementary Text 1. Raw sequence data (fastq) of the RI(AI) 
Ls have been deposited in the NCBI SRA under project number 
PRJNA1083210. Genome sequences for the G0 progenitor and the 
parent MA lines have been previously reported (Saxena et al. 
2019; Rajaei et al. 2021).

Imputation
Given the low (2–3×) sequencing coverage, approximately 1/3 of 
the data (35.2%) are missing, i.e. the genotype at a given locus 
was not called as either homozygote. The mean number of loci 
successfully genotyped per RI(AI)L is 109, and the mean number 
of RI(AI)Ls for which a locus was scored is 335. To account for 
the missing genotype information, we constructed a computa
tional procedure to impute the missing data by leveraging the 
linkage disequilibrium (LD; see next section) between segregating 
sites. Specifically, we used the masked language modeling ap
proach from the natural language processing to build a predictive 
model for the missing alleles. The imputation model is built on the 
transformer architecture, which has been widely used for model
ing natural languages as well as biological sequences such as 
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DNAs and proteins (Ji et al. 2021; Rives et al. 2021). The model out
put consists of the predicted log-probability for all possible states 
per site, i.e. the MA530 or MA563 allele. The details of the model 
are given in Section IV of the Supplementary Text 1.

To assess the model’s performance, we performed 100 rounds 
of validation. For each round, all RI(AI)L genotypes were used for 
training, but with 1% of the called alleles randomly masked. 
Across the 100 rounds, we observed a high imputation accuracy 
on the masked positions: mean ± 1 SD prediction accuracy =  
90.3 ± 1.5%. Cases in which the imputed allele differs from the 
called allele include errors in the initial call, so 90% is a conserva
tive estimate of the true prediction accuracy. The final imputed 
genotypes (Supplementary Table 1) were generated by retraining 
the model on all RI(AI)L genotypes using all available allele 
information.

Linkage disequilibrium (LD)
Alleles from the 2 parents, MA530 and MA563, are initially in com

plete coupling (positive) linkage disequilibrium in the F1. 

However, mutant alleles occur in both parental genomes, so al

though the initial LD between pairs of mutant alleles is complete, 

the sign of the association (positive or negative) depends on which 

parental genomes the mutations occurred. Measures of LD that do 

not account for the sign of the association are agnostic with re

spect to whether alleles are coded by the parent of origin or as an

cestral (0) vs mutant (1); the value is the same either way. 

Measures of LD that do account for the sign of the association 

may differ by sign depending on whether the alleles are coded 

by parent of origin vs ancestral vs mutant. For our purposes, it is 

more meaningful to code alleles as ancestral or mutant.

Fig. 1. Intrachromosomal pairwise linkage disequilibrium (LD). a) Pairwise LD (r2) calculated with all lines (RIAILs + RILs), b) RILs only, and c) RIAILs only. 
Each heat map represents a chromosome with pairwise LD (r2) between mutant loci colored as shown in the legend. The lines above each chromosome 
represent the parental origin of the mutant allele (MA530 = solid blue, MA563 = dashed orange). These lines also show the relative physical position of 
mutant loci across each chromosome; the far-left vertical line represents the first mutant locus on the chromosome and the far-right vertical line 
represents the last mutant locus.

DFE of recombinant C. elegans MA lines | 3
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/advance-article/doi/10.1093/genetics/iyae136/7733330 by Johns H
opkins U

niversity user on 09 Septem
ber 2024

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyae136#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyae136#supplementary-data


The pairwise coefficient of the linkage disequilibrium, D = pA1B1 

− pA1pB1 where pA1B1 is the frequency of the double-mutant (A1B1) 
haplotype at the A and B loci, pA1 is the frequency of the mutant 
allele at the A locus, and pB1 is the frequency of the mutant allele 
at the B locus. The expected allele frequency in the RI(AI)Ls is 0.5 at 
all segregating loci, but the observed frequencies will vary due to 
sampling. We report 2 measures of LD, the squared coefficient of 
correlation, r2, and D* = D/|Dmax|, where |Dmax| = min[pA1(1 − 
pB1)], (1 − pA1)pB1]; r2 is constrained nonnegative and D* can take 
on values [−1,1]. Note that our D* is the familiar D’ but with the 
sign retained. We calculated r2 and D* among all pairs of the 169 
loci using the PLINK v1.9 commands “--r2” and “--r dprime-signed”, 
respectively (Purcell et al. 2007). We also report the mean pairwise 
intrachromosomal and interchromosomal LD for (1) all lines (n =  
517), (2) RILs only (n = 325), and (3) RIAILs only (n = 192). To visual
ize the intrachromosomal pairwise LD we used the ggplot2 pack
age v3.4.4 for R Statistical Software v4.2.3 (Wickham 2009).

Heritability
We estimated the broad-sense heritability (H2) of W from the 
among-line (i.e. among-RI(AI)L) component of variance estimated 
from the general linear model (GLM) yijk = μ + αi + βij + ϵijk, where yijk 

is the value of W, μ is the overall mean, αi is the random effect of 
block i, βij is the random effect of line j in block i, and ϵijk is the re
sidual effect of replicate k of line j in block i. Because the RI(AI)Ls 
are homozygous lines derived from a cross of homozygous par
ents, VG = VL, where VL is the among-line component of variance 
(Falconer 1989, Ch. 15) and the broad-sense heritability H2 = VG/ 
VP, where VP is the total phenotypic variance. Variance compo
nents were estimated by restricted maximum likelihood (REML), 
as implemented in the MIXED procedure of SAS v. 9.4. The 95% 
confidence intervals of H2 were determined empirically from 200 
bootstrap replicates and resampling lines pooled over blocks 
while retaining the effect of block in the analysis.

To account for the possibility that some of the among-line vari
ance was due to factors other than genotype, we included a set of 6 
“pseudolines” of the G0 ancestor and of each parental MA line in 
each assay block, which are the experimental equivalent of RILs ex
cept they are genetically homogeneous, and any among-(pseudo) 
line variance must be due to causes other than variation among 
genes. Pseudolines were analyzed identically to the RI(AI)Ls.

We next estimated the proportion of the total broad-sense 
heritability not explained by the cumulative additive effects of 
the mutations, H2* (here “additive” formally means “homozygous 
non-epistatic” because we have no information about dominance). 
First, we calculated the multiple regression yijk = μ + βx + ϵ, where 

yijk is the value of W as before, μ is the overall mean, x is the vector 
of genotypes at mutant loci 1–169, β is the vector of regression coef
ficients, and ϵ is the residual effect. We then re-estimated the lin
ear model from above, y*ijk = μ + αi + βij + ϵijk, where the terms are as 
before, where the y*ijk are the residuals of the multiple regression 
of W on the multilocus genotype, x. The difference H2 − H2* is 
the narrow-sense heritability h2, i.e. the fraction of the total pheno
typic variance explained by the additive effects of the mutations. 
The statistical significance of h2 was assessed by randomly per
muting estimates of W among replicates and re-calculating h2.

Estimation of the DFE
Raw difference
The simplest way to measure the phenotypic effect of a mutation at 
locus i is from the average difference in the trait between lines that 
have the mutant allele and lines that have the ancestral allele at lo
cus i. Following Böndel et al. (2019) we refer to the mutational effects 
calculated in this way as the raw difference, uRAW . Confidence inter
vals and approximate standard errors of uRAW were calculated from 
1,000 bootstrap replicates, holding the number of lines in each cat
egory (mutant, wild-type) constant in each (re)sample.

Bayesian MCMC
We take a fully Bayesian approach to estimate the posterior dis
tribution of all genetic and nongenetic parameters. The basic 
model is the same as in section Heritability above, such that 
the observed fitness of replicate k of line j in block i is: yijk = μ + 
αi + βTxj + ϵijk. The vector β contains the effects for the 169 muta
tions. We fit a series of models with increasing complexity in the 
prior distribution of β to test different hypotheses regarding the 
DFE of the mutations. In all models, the grand mean, μ, follows 
an uninformative normal distribution with mean 0 and 
SD = 10. The individual block effects follow normal distributions 
with mean 0 and SD = 1, given the small variation in block effects 
when averaged over lines (SD = 0.13). The models tested are 
summarized in Table 1.

To begin, in model 1 (“neutral model”) mutational effects are con
strained to 0, i.e. β = 0. In model 2 (“uniform effect model”), all muta
tions in the vector β have a constant effect (u), such that yijk = μ + αi +  
mj × u + ϵijk, where mj is the number of mutant alleles in line j.

Model 3 (“neutral + uniform effect model”) assumes that muta
tions in vector β follow identical independent distributions such 
that the m-th mutation, βm, has a probability 1 − q of being neutral, 
and q of having a non-0 constant effect u, such that βm = w × u, 
where w is sampled from a Bernoulli distribution with parameter 
q, which in turn is drawn from an uninformative Beta prior with a 

Table 1. Comparison of 7 competing Bayesian models fitted to the genotype and phenotype data of all RILs and RIAILs, and separately to 
RILs and RIAILs.

RILs + RIAILs RILs RIAILs

Index Model name LOO-ELPD Δ Best LOO-ELPD Δ Best LOO-ELPD Δ Best

1 Neutral −3,501.2 −99.2 −2,200.6 −33.4 −1,493.1 −133.6
2 Uniform −3,478.2 −76.2 −2,190.1 −22.9 −1,472.6 −113.1
5 Neutral + uniform −3,422.2 −20.2 −2,179.7 −12.6 −1,365.1 −5.5
4 Negative gamma −3,422.2 −20.2 −2,181.0 −13.8 −1,360.3 −0.8
5 3 effects −3,403.1 −1.1 −2,170.8 −3.7 −1,360.4 −0.8
6 Symmetric gamma −3,402.0 0 −2,168.2 −1.1 −1,359.6 0
7 Asymm. gamma −3,402.3 −0.3 −2,167.2 0 −1,359.9 −0.3

Each model was run with 50 random genotype replicates. Each replicate consisted of 4 Markov Chains with 4,000 Metropolis steps. Sampling was performed using the 
software PyMC3 (Salvatier et al. 2016). Model performance is measured using the Bayesian leave-one-out expected log pointwise predictive density (LOO-ELPD), 
quantifying the generalizability of the fitted model to validation data points. Higher (less negative) LOO-ELPD indicates better model performance.
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shape parameter = 2. In both the uniform effect model and the 
neutral + uniform effect model, the constant mutational effect u 
follows a normal prior with mean 0 and SD = 10. Model 4 
(neutral + uniform positive effect + uniform negative effect, 
“3-effect model”) in addition assumes that mutations can take 
both constant positive or negative effects, such that βm = w × 
(z × u+ − (1 − z) × u−). Similarly, w is a Bernoulli random variable 
with the probability q, equal to the probability that a mutation is 
nonneutral, which follows the same distribution as model 3. The 
parameter z controls the conditional probability of a nonneutral 
mutation having the positive effect and is a Bernoulli random 
variable with probability p+, which follows an uninformative 
Beta distribution with shape parameters = 2. The constant posi
tive/negative effects upos/uneg follow an uninformative normal dis
tribution with mean 0 and SD = 10.

In addition to these constant-effects models, we tested 3 mod
els in which mutational effects are sampled from a continuous 
gamma distribution. In model 5 (“negative gamma”), all muta
tions are assumed to have negative (i.e. deleterious) effects, 
with effect sizes sampled identically and independently from a 
gamma distribution, whose shape and rate parameters follow 
uninformative half normal distributions (SD = 10). In model 6 
(“symmetric gamma”) and model 7 (“asymmetric gamma”), mu
tations can have either positive or negative effects, such that we 
can express individual mutation effects as βm = z × βm

+ − (1 − z) × 
βm

− . Similar to model 4, z is a Bernoulli random variable with 
probability p+, which follows a symmetric Beta distribution. 
The positive (negative) effect sizes, βm

+ (βm
− ) are in turn sampled 

from their respective gamma distributions, as in model 5. The 
only difference between models 6 and 7 is that in model 6, βm

+ 

and βm
− follow the same gamma distribution, whereas in model 

7, the gamma distributions for the positive and negative-effect 
sizes are allowed to be different.

The Bayesian inference for all models was implemented in the 
statistical software PyMC3 v5.10 (Salvatier et al. 2016). The No-U- 
Turn-Sampler was employed to acquire posterior samples. 
Continuous random variables were sampled using the 
Hamiltonian Monte Carlo method which relies on gradients calcu
lated using automatic differentiation, whereas discrete random 
variables were sampled using the Metropolis algorithm. To ac
count for the uncertainty in the genotypes due to missing alleles, 
for each model we performed 50 independent Monte Carlo runs, 
each with missing alleles sampled from independent Bernoulli 
distributions with the probability predicted by the trained imput
ation model. For each model and genotype replicate, we ran 4 par
allel Monte Carlo chains, each with 1,000 warm up steps and 4,000 
sampling steps.

We used the R-hat statistic (Vehtari et al. 2021) as a diagnostic of 
model divergence, which compares the parameter estimates be
tween and within chains. R-hat is greater than 1 if the chains 
are not well mixed, such that the between and within-chain sam
ple distributions disagree.

We used a Bayesian model selection procedure to identify 
the best model. Specifically, for each model we estimated the 
leave-one-out expected log pointwise predictive density (ELPD 
LOO) model fit, equal to the mean expected log likelihood of 
the observed fitness of a random individual given its genotype, 
calculated based on a model fitted using the full data set minus 
the focal individual. The procedure is implemented in PyMC3 
based on the approximate method introduced by Vehtari et al. 
(2017) The ELPD LOO scores for all 50 genotype replicates 
were averaged to provide an overall goodness-of-fit score for 
each model.

Results
Linkage disequilibrium
The purpose of constructing RI(AI)Ls is to break up the linkage dis
equilibrium between mutations and to permit estimation of the 
effects of individual mutations. That effort was only partially, 
and variably, successful. Averaged over all lines (RILs + RIAILs), 
the intrachromosomal LD as measured by median r2 is 0.12 
(Fig. 1; Supplementary Fig. 2). However, the LD is much higher in 
the RILs (median r2 = 0.28) than in the RIAILs (median r2 = 0.045). 
The 10 generations of advanced intercrossing were effective in 
breaking up the LD, on average, but regions of the near-complete 
LD remain even in the RIAILs. Inspection of Fig. 1 reveals that re
gions of high LD are concentrated in the chromosome centers, as 
expected, given the reduced rate of crossing over in centers relative 
to arms although there are also regions of high LD in chromosome 
arms where mutations are tightly clustered. Interchromosomal LD 
is near 0 in both RILs and RIAILs (Supplementary Fig. 3), indicating a 
trivial role for sampling variance in maintaining LD.

Heritability
Our goal is to estimate the effects of spontaneous mutations on 
fitness. To begin, we ask: is there a heritable variation in competi
tive fitness among the RI(AI)Ls? The broad-sense heritability of W 
including all RI(AI)Ls is H2 = 0.30 (bootstrap 95% CI = 0.271, 0.370). 
Estimates of H2 were similar for RIAILs (H2 = 0.337; bootstrap 95% 
CI = 0.256, 0.403) and RILs (H2 = 0.313; bootstrap 95% CI = 0.243, 
0.382). Including all RI(AI)Ls, the narrow-sense heritability, esti
mated from the residuals of the multiple regression of W on multi
locus genotype, is h2 = 0.16 (permutation test, P < 0.001; averaged 
over 1,000 permutations of the data, random h2 = 0.023, max =  
0.048). The cumulative additive effects of the 169 segregating 
spontaneous mutations explain approximately half of the total 
heritable variance in W. By way of comparison, H2 for competitive 
fitness from a set of 28 C. elegans wild isolates was 0.49 although 
the assays in the 2 studies are not directly comparable (Teotónio 
et al. 2006).

Considering RIAILs and RILs separately, h2 of the RILs is similar 
to the estimate from the full dataset (h2 = 0.20, n = 325), whereas 
the same analysis for RIAILs gives a REML point estimate of re
sidual among-line variance VL = 0 (note that this VL is from the 
model where additive effects have been regressed out; as reported 
above, VL is large and highly significant in the model that does not 
incorporate the effects of mutations). Taken at face value, these 
results imply that additive mutational effects completely explain 
H2 (i.e. h2 = H2) in the RIAILs, whereas the additive effects only ex
plain about 2/3 of the among-line variance in the RILs. To investi
gate the possibility that LD could explain the unexplained 
among-line variance in the RILs, we used parametric bootstrap si
mulations, as follows. For each RIL we (1) assigned each mutation 
in its genome a fitness effect drawn from a given DFE with mean 
effect equal to the observed mean, (2) summed the effects across 
loci, and (3) added to each replicate a residual (microenvironmen
tal) fitness effect drawn from a normal distribution. We then esti
mated H2 and h2 from the simulated data as described above. In 
the first set of simulations (n = 100), we maintained the observed 
LD structure; in the second set of simulations we permuted alleles 
(mutant or ancestral) among loci in each RIL to break up the LD. 
We tested 2 different DFEs. The first DFE is the “asymmetric gam
ma model” described in Materials and methods, where mutations 
can have positive or negative effects, with the magnitude of the 
positive/negative effect drawn from 2 nonidentical gamma distri
butions. The second DFE is the “negative gamma” model, where 
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mutations can only have negative effects and are drawn from a 
single gamma distribution. We sampled effects of mutations 
from these 2 DFEs using the posterior mean model parameters 
(Supplementary Table 2). Residual fitness effects were sampled 
from 0-mean normal distributions with variance equal to the pos
terior means of the noise variance inferred jointly with model 
parameters for the 2 DFEs (σ2 ≈ 1). For both DFEs, LD had no effect 
on the inferred h2; in each case h2 = H2 in 100% of the simulations, 
as expected because the mutations were the only source of 
among-line variance in the simulations.

Having ruled out differences in LD as the cause of missing her
itability in the RILs if mutational effects are strictly additive, the 
remaining unexplained heritability in the RILs must be due to 
some combination of epistasis, transgenerational epigenetic in
heritance (TEI), and/or residual (but small) genotype–environ
ment correlations. It is not obvious at first glance why the same 
set of epistatic mutations would lead to missing heritability 
in the RILs but not in the RIAILs. However, the number of RIAILs 
(n = 192) is only slightly greater than the number of loci (n =  
169), so it is plausible that there simply is little power to detect 
the residual among-line variance once the additive effects of the 
mutations are accounted for. When h2 is estimated for the full 
set of RI(AI)Ls with the additive effects regressed separately for 
each block, the residual heritability disappears; that result rein
forces the likelihood that the absence of missing heritability in 
the RIAILs is simply due to lack of power rather than an actual ab
sence of nonadditive among-line variance. We elaborate on this 
possibility in Section V of the Supplementary Text 1.

To account for potential nongenetic variation that is neverthe
less heritable over a few generations, we estimated variance com
ponents among sets of “pseudolines” of the G0 ancestor of the 
parental lines and of the MA530 and MA563 parental lines. 
These controls are not powerful (n = 30 pseudolines, 6 per block), 
but in all 3 cases the REML estimate of the among-pseudoline 
component of variance is VL = 0.

Relationship between number of mutations and 
mean fitness
If all mutational effects are equal and in the same direction (i.e. 
the Bateman–Mukai criteria (Mukai 1964)), the slope of the regres
sion of W on the number of mutant alleles carried by a line will 
equal the average effect of a mutation. Averaged over all RI(AI) 
Ls, accounting for variation among assay blocks and removing 2 
outlying lines, the regression of W on the number of mutations 
is not significantly different from 0 (slope = −0.0051, F1,509 = 1.83, 
P > 0.17) although the trend suggests that mutations are deleteri
ous, on average.

Relationship between mutational effect and 
mutant allele frequency
The expected frequency of segregating neutral alleles in the RI(AI) 
Ls is 0.5. Selection was minimally effective in the crossing and in
breeding phases (Ne ≈ 2), but it was not absent. If most mutations 
are deleterious and if deleterious alleles were preferentially re
moved by selection, then (1) the average frequency of mutant al
leles will be <0.5 and (2), there should be a negative relationship 
between the allele frequency and the mutational effect size. 
The mean observed mutant allele frequency is 0.500 (range =  
0.287–0.675). The correlation between the mutant allele fre
quency pi at the ith locus and the raw difference uRAW,i is rpu =  
0.15 (Supplementary Fig. 4). Thus, we infer that the selection did 
not systematically skew mutant allele frequencies away from 
the expected neutral frequency.

The Bayesian posterior DFE
To infer the DFE, we tested a series of 7 increasingly complex mod
els, using the Bayesian MCMC analysis outlined in the Materials 
and methods. Because of the discrepancy in the average LD be
tween the RIAILs and the RILs, all analyses were first done on 
the full set of RI(AI)Ls, and repeated on RIAILs and RILs separately.

As a first step, we tested for model convergence, using the R-hat 
statistic. We observed no divergence between the 4 parallel Markov 
chains, indicated by R-hat < 1 in all cases (Vehtari et al. 2021). Model 
performance, as measured by the Bayesian leave-one-out expected 
log pointwise predictive density (LOO-ELPD, Vehtari et al. 2021), 
averaged across 50 genotype replicates, is summarized in Table 1. 
Posterior means and 95% credible intervals of model parameters 
are given in Supplementary Table 2.

All lines (RILs + RIAILs = RI(AI)Ls)
Reassuringly, the neutral model, in which mutational effects are 
constrained to equal 0, performs worst. The uniform effect model, 
in which mutational effects are constrained to be equal, is moder
ately better (Δfit = 23.0). The posterior mean for the shared muta
tional effect (u) is negative and has a 95% credible interval not 
intersecting 0 (u = −0.006; CI = −0.009, −0.005).

The neutral + uniform effect model, in which mutations can ei
ther have a uniform non-0 effect with probability q or be neutral 
with probability 1 − q, performed significantly better (Δfit = 50.0). 
Again, the mean mutational effect is inferred to be negative (u =  
−0.16, 95% CI = −0.24, −0.10), but with low probability (q = 0.064, 
95% CI = 0.026, 0.114). The negative gamma model, in which ef
fects are constrained to be negative and sampled from a gamma 
distribution, fits equally well as the neutral + fixed effect model 
(u = −0.007, Δfit = 0.0).

All models summarized so far assume mutations must have a 
uniform sign. The first model relaxing this assumption is the 3-ef
fect model, in which a mutation can be neutral with probability 1  
− q or have a fixed positive/negative effect with probabilities q+ 

and q− (in our Bayesian model parametrization, q+ = q × p+, q− =  
q × (1 − p+), where p+ is the probability that a mutation has a posi
tive effect, given that it is nonneutral). This model showed a sig
nificant improvement in performance (Δfit = 19.1).

Finally, the 2-sided gamma models (symmetric and asymmetric 
gamma) provide a moderate improvement over the 3-effect model. 
The 2 models have LOO-ELPD scores that are nearly indistinguish
able (symmetric gamma model = −3,402, asymmetric gamma 
model = −3,402.3), indicating that the additional flexibility con
ferred by the asymmetric gamma model does not confer higher 
generalizability to new data. For the asymmetric gamma model, 
the alpha (scale) and beta (rate, inverse of the scale parameter) 
parameters for the positive and negative halves of the distribution 
have nearly identical posterior distributions (Supplementary 
Table 2). Additionally, the 2-sided gamma models show very simi
lar posterior distributions for all parameters. We therefore focus 
our discussion on the more parsimonious symmetric gamma 
model.

On average, mutations are slightly less likely to have a positive 
effect (p+ = 0.426; 95% CI = 0.294, 0.547). The posterior distribution 
of the effects of all 169 mutations shows that 39.6% of all muta
tions have a positive posterior mean effect (Fig. 2a), consistent 
with the posterior probabilities p+/−. However, individual muta
tions exhibit large credible intervals that intersect 0 (Fig. 3a). 
The distribution of negative mean effects shows a longer tail 
than the positive effects, but this asymmetry in shape was not re
flected in the model selection results, where the symmetric and 
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asymmetric gamma models have virtually identical performance. 
This is likely a power issue, whereby the increased flexibility of the 
asymmetric gamma model was not supported by enough data to 
result in likelihood improvements that can offset the penalty re
sulting from the higher model complexity.

RILs
The model selection results for the RILs are largely consistent with 
results based on the full set of RI(AI)Ls. The neutral and the fixed 
effect models have the lowest LOO-ELPD (Table 1). The 2 negative 
effects models have similar LOO-ELPD values and show signifi
cant improvement over the first 2 models. Finally, we see that 

the three 2-sided models provide further substantial improve
ment over the 1-sided model. The 2-sided gamma models pro
duced very similar LOO-ELPD scores, while the 3-effect model 
has a moderately lower value. The distribution of mean mutation
al effects under the symmetric gamma model is similar to results 
generated from the full set of RI(AI)Ls (Pearson’s r = 0.56; Fig. 2b).

RIAILs
Model selection results for the RIAILs reveal a different pattern. 
Although the neutral and fixed effect models still perform worst, 
the performance of the models in which effects are constrained 
to be nonpositive (in particular the negative gamma model) is 

Fig. 2. Distribution of Bayesian posterior mutational effects on fitness. The distribution of mean mutational effects (u) calculated using the Bayesian 
MCMC method is shown. The distribution is calculated separately with a) all lines, b) RILs only, or c) RIAILs only. The vertical dashed line in each panel 
represents the mean of means for that population. The mean value for each panel is also annotated on the plots.

Fig. 3. Bayesian posterior mutational effects by genome position. The mutant loci are plotted by their physical position in the genome (x-axis) and their 
mean mutational effect (u) (y-axis), which was calculated using the Bayesian Markov chain Monte Carlo (MCMC) method. The colors indicate the parent 
of origin for the mutant locus (MA530 = blue, MA563 = orange) and the shapes show the mutant class (indel = circle, snp = triangle). The vertical lines 
plotted behind each point represent the 95% confidence intervals of the mutant effect estimates. The mutational effects are calculated separately with all 
lines a), RILs only b), and RIAILs only c).
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now close to that of the 2-sided models (Table 1). The similarity 
between the 2-sided models and the negative-only model is sup
ported by the change in the shape of the 2-sided gamma models, 
in which the frequency of mutations with positive effects is lower 
(q+ = 0.355; 95% CI 0.119, 0.595). Inference from RIAILs resulted in 
an overall reduction in the mean posterior effects of mutations, 
such that the effects of most mutations are shrunk toward 
0 (Fig. 2c). Additionally, the posterior variance of the mutational ef
fects is lower in the RIAILs (mean posterior SD of mutational ef
fects is 0.040, compared with 0.056 in the full set of RI(AI)Ls) 
(Fig. 3c), even with the lower sample size. The mutational effects 
for the RIAILs are more weakly correlated to those inferred from 
the full set of RI(AI)Ls (Pearson’s r = 0.36) than are the effects in
ferred from the RILs.

Locus-specific effects
The simplest way to infer the mutational effect at a locus is to cal
culate the mean value of all lines with a mutant allele and all lines 
with an ancestral allele at that locus; the difference is the raw dif
ference (uRAW) of the mutation at that locus. As a sanity check, we 
plotted the inferred Bayesian posterior effect against the raw differ
ence; ideally, the correlation should be +1. The correlations were 
positive, but well below 1 in all 3 cases (Fig. 4). The magnitude of 
the raw difference is typically much larger than that of the poster
ior effects. The difference is likely caused by LD, in that the raw dif
ference of a single mutation contains contributions from other 
linked mutations, which may inflate the estimates.

Effects of mutant haplotypes
A major challenge is that many mutations are in high LD, making 
the effects of individual mutations nearly unidentifiable (for ex
ample, if 2 mutations with effects, u1 and u2 are in complete LD, 
we only have observations for the sum of their effect u1 + u2, mak
ing it impossible to estimate u1 and u2 separately). To proceed, we 
first identified haplotype blocks consisting of groups of loci in 
which the LD among all pairs of consecutive loci is r2 > 0.8. We 
then designated 2 haplotypes for each haplotype block. Among 
loci in a haplotype block, 2 types of haplotype assignment can oc
cur. Consider a haplotype block with 2 loci, each with an ancestral 
and a mutant allele (coded 0 and 1). If the 2 loci are in positive LD, 
we have an ancestral haplotype (00) and a double-mutant haplo
type (11). If the 2 loci are in negative LD, we have 2 single-mutant 
haplotypes, 01 and 10. Haplotypes that did not perfectly match ei
ther the parental haplotype were assigned to the closer parent 
(e.g. if the parents were 001 and 110, an individual with haplotype 

111 was designated as having haplotype 110). Treating the data as 
haplotypes rather than individual loci reduces the sample size 
from 169 (the number of loci) to 114 (the number of haplotypes). 
We restricted this analysis to the symmetric gamma model.

We acquired the posterior sample of a mutant haplotype by 
summing the posterior samples of the individual mutations at 
each locus in the haplotype. We repeated this procedure for the 
RILs, RIAILs and the full set of RI(AI)Ls. In all 3 cases, the distribu
tion of the mean mutant haplotype effects is skewed to the left 
(Fig. 5). The percentage of mutant haplotypes with negative pos
terior means is 61.4% in the full set of RI(AI)Ls, 64.0% in the 
RILs, and 67.5% in the RIAILs. Again, inference from the RIAILs re
sults in an overall reduction in the mean and variance of posterior 
effects of mutant haplotypes, relative to inferences from RILs and 
the full set of RI(AI)Ls. The mean absolute posterior mean effect 
for the negative mutant haplotypes based on RIAILs only (u− =  
−0.022) is twice that of the positive mutant haplotypes (u+ = 0.011).

Finally, the lower LD in the RIAILs allowed us to identify a mu
tant haplotype with a strong negative effect located in a 6.05 Mb 
region between positions 3,771,123 and 9,819,058 on chromosome 
III (Fig. 6). This haplotype contains 13 mutations, including 11 
SNPs and 2 indels. The 2 mutant haplotypes are 1000111001100 
for MA530, and 0111000110011 for MA563. The MA563 mutant 
haplotype has a large negative effect (u = −0.760; 95% CI −1.09, 
−0.149), whereas the MA530 mutant haplotype shows a moderate
ly strong positive mean effect (u = 0.118; 95% CI −0.134, 0.647). 
However, their effects are strongly negatively correlated in the 
posterior samples, i.e. if an estimated effect at the MA530 haplo
type is large and negative, the corresponding estimate at the 
MA563 haplotype is large and positive. The most we can say 
with confidence is that the cumulative effect of mutations in 
this region is to reduce W by about 0.64 relative to the ancestor, 
which is sufficient to explain the decrease in fitness of MA563 rela
tive to the ancestor (Supplementary Fig. 5).

The full list of mutations, along with the parent of origin and 
their inferred effects, are presented in Supplementary Table 3; fit
ness data are presented in Supplementary Table 4.

Discussion
Unsurprisingly, mutations are deleterious, on average. Coincidentally 
or not, the point estimate of the mean average raw difference in com
petitive fitness in the RI(AI)Ls, −0.0039, is extremely similar to the 
same estimate from the full set of 80 MA lines of which the 2 parental 
lines were drawn. Assuming that a random pair of MA lines differs 

Fig. 4. The relationship between Bayesian posterior mutational effects (u) and raw difference, uRAW. The effects are calculated separately using a) all lines, 
b) RILs only, or c) RIAILs only. Each point represents a locus and is colored by the parent of origin (MA530 = blue, MA563 = orange). The shape of the point 
shows the mutant class (indel = circle, snp = triangle). 95% confidence intervals for the estimates are plotted as vertical and horizontal lines behind the 
points. Pearson’s correlation coefficient (r) is displayed in the upper left of each panel.
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by 160 mutations, the average mutational effect estimated 
from the data of Yeh et al. (2018, Table 1) is −0.0040. Given 
the substantial sources of variation in these experiments, 
the concordance is remarkable. In a similar vein, Yeh et al. 
estimated the mutational heritability from the same data, h2

M = 
VL/2t = 0.00084/generation of MA. Summed over the 
approximately 250 generations of MA, we predict a broad- 
sense heritability H2 ≈ 0.2, about 2/3 of the observed value in 
this study. Or differently put, our estimate of H2 implies a mu
tational heritability h2

M ≈ 0.0012 . Given that both measures of 
heritability are ratios of variances, the observed values are 
quite consistent.

Perhaps more surprising is the relatively high narrow-sense 
heritability of the mutational effects (h2 = 0.16), which explain 
roughly half of the heritable variance in fitness. There are no com
parable competitive fitness data from wild isolates, but Zhang 
et al. (2021) estimated H2 and h2 for lifetime fecundity on solid 
media for a set of 121 C. elegans wild isolates. In their assay h2 

(0.20) was about 1/3 of H2 (0.63). In contrast to our RI(AI)Ls, which 
differ by about 85 mutations on average, the wild isolates differ by 
thousands of segregating variants. Comparison of heritabilities is 
problematic because the upper bound is 1, which means that h2 

necessarily reaches an asymptotic value. However, if we assume 
that the contribution of nonheritable effects (VE) is similar in the 

Fig. 5. Distribution of Bayesian posterior mutant haplotype effects on fitness. The distribution of mean mutant haplotype effects (u) calculated using the 
Bayesian MCMC method is shown. The distribution is calculated separately for a) all lines, b) RILs only, or c) RIAILs. The vertical dashed line in each panel 
represents the mean of means for that population. The mean value for each panel is also annotated on the plots.

Fig. 6. Bayesian posterior mutant haplotype effects by genome position. The 114 mutant haplotypes are plotted by their physical position in the genome 
(x-axis) and their mean haplotype effect (u) (y-axis), which was calculated using the Bayesian Markov chain Monte Carlo (MCMC) method. The center of 
haplotypes is plotted as points and the genomic range of multilocus haplotypes are represented by horizontal boxes plotted behind the points. The colors 
indicate the parent of origin for the mutant haplotype (MA530-blue, MA563-orange). Multilocus mutant haplotypes are plotted with square points (multi), 
and the other single-locus haplotypes are plotted with shapes based on mutation type (indel-circle, snp-triangle). The vertical lines plotted behind each 
point represent the 95% confidence intervals of the haplotype effect estimates. The haplotype effects are calculated separately with all lines a), RILs only 
b), and RIAILs only c).
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2 studies—and we would naively expect that VE is greater in a 
competitive fitness assay than in a noncompetitive assay because 
the competitor contributes to VE—the implication is that the 
asymptote is reached after at most a few hundred generations 
of mutations have accumulated in the population.

The inclusion of both RILs and RIAILs in the experiment is for
tuitous. If we only had RILs to work with, we would have been 
much more confident in concluding that a large proportion of mu
tations has positive effects. The 10 generations of intercrossing in 
the RIAILs broke up most of the initial LD, but not all of it, and it is 
clear that at least some of the apparently greater fraction of 
positive-effect mutations in the RILs can be attributed to the con
founding effect of negative-effect mutations in the LD. Inspection 
of the DFE along the chromosome (Fig. 3) reveals a negative spatial 
autocorrelation: mutations inferred to have large positive effects 
are usually in close proximity to 1 or more mutations with large 
negative effects.

This study was motivated by 3 antecedents: the studies of 
Böndel et al. (2019), who used a related crossing design to estimate 
the DFE from spontaneous MA lines in the unicellular green alga 
C. reinhardtii; of Gilbert et al. (2021), who estimated the C. elegans
DFE from the standing site frequency spectrum among wild iso
lates; and those of Vassilieva et al. (2000) and Keightley et al. 
(2000), who estimated the DFE from the distribution of (non
competitive) fitnesses among C. elegans MA lines. We consider 
each in turn.

Böndel et al.’s crossing design differed from ours in a key 
way: they backcrossed MA lines to the common ancestor rather 
than crossing 2 MA lines. Their design results in all mutations 
being initially in complete coupling (positive) LD, rather than a 
random mix of coupling and repulsion LD, as in our design. 
Nevertheless, their design is still constrained to infer the cumula
tive effects of mutations in LD. They did not report LD, nor did they 
report the distribution of mutational effects along the chromo
somes (except as raw data). They too observed a high proportion 
of mutations with positive effects on fitness; in their best-fit model 
(2-sided gamma with different means for positive and negative 
DFEs), the DFE was highly leptokurtic, with a posterior mean fre
quency of positive effects, q+, of 84%. However, the estimated 
mean (absolute) effect of deleterious mutations, u−, was 4–5 times 
greater than the mean positive effect, which reconciles the high 
frequency of mutations with positive effects with the consistent 
and well-supported overall decline in fitness of the MA lines. 
They too observed a strong positive correlation between the in
ferred posterior mean mutational effect at a locus and the raw dif
ference and that the Bayesian posterior DFE was shrunk toward 0 
compared to the raw difference.

Gilbert et al. used maximum likelihood, as implemented in the 
DFE-alpha software (Keightley and Eyre-Walker 2007), to infer the 
DFE from segregating the SNP variation in a set of ∼300 C. elegans
wild isolates. They also analyzed data simulated under realistic 
parameters of mutation and recombination to investigate the ef
fect of self-fertilization on the inferred DFE. They found that, 
while DFE-alpha reprises the input DFE quite faithfully when mat
ing is random, self-fertilization biases the results toward muta
tions of a small negative effect, evidently due to the slower 
decay of LD under selfing. The inclusion of a small fraction 
(0.1%) of beneficial mutations similarly biases the inferred DFE 
of deleterious mutations toward small effects.

C. elegans MA lines invariably decline in fitness, and early stud
ies concluded that the mean deleterious mutational effect is quite 
large (∼10–25%) (Keightley and Caballero 1997; Vassilieva et al. 
2000; Estes et al. 2004), although none of those studies investigated 

competitive fitness. The point estimate of the mean deleterious 
mutational effect from our neutral + uniform effect model (model 
3) in the full set of RI(AI)Ls is −0.16, and the inferred fraction 
of deleterious mutations (0.064) translates to a per-genome, per- 
generation deleterious mutation rate of U ≈ 0.02, very consistent 
with the aforementioned studies. Coincidentally or not, our infer
ence from RIAIL haplotypes that the C. elegans DFE consists 
of a very large proportion of mutations with near-0 effects inter
spersed with a small number of mutations with large negative ef
fects is very similar to the conclusion of Keightley et al. (2000), who 
reached that conclusion from the distribution of fitnesses among 
C. elegans MA lines that had been subjected to EMS mutagenesis.

Conclusions
Two primary conclusions emerge from this work. First, mathem
atics is no substitute for recombination where inference of the 
DFE is concerned. When mutations are in strong LD—repulsion 
or coupling—different combinations of positive and negative ef
fects can result in the same cumulative effect, possibly leading 
to the mistaken inference that the DFE includes a large fraction 
of mutations with positive effects. However, posterior estimates 
at linked loci will be strongly negatively correlated, which will 
not be true of unlinked loci. That conclusion is obvious in hind
sight and should serve as a cautionary note. But second, the un
planned inclusion in this study of RILs along with the RIAILs and 
the large difference in average LD between the 2 sets of lines turns 
out to be informative. As the LD is reduced in the RIAILs vs the 
RILs, the DFE becomes more leptokurtic, the inferred proportion 
of mutations with negative effects increases, and the relative dif
ference in magnitude between negative and positive effects in
creases (negative effects become increasingly greater). When 
mutations are binned into haplotypes, the most intuitive inter
pretation of the results is that almost all mutations have effects 
that are very close to 0, and that the decline in fitness with MA 
is the result of a small number of mutations with large negative 
effects—perhaps only 1, on chromosome III in the MA563 genome.

Looking ahead, we envision understanding of the DFE being ad
vanced in 3 ways. First, technical advances in high-throughput 
gene editing will allow efficient construction of nearly isogenic 
lines (NILs), removing the confounding effects of LD. The muta
tion spectrum can be inferred, and a large random sample of 
spontaneous mutations can be engineered into a common gen
omic background(s), and the DFE estimated as we have done 
here. Second, the DFE of a common set of mutations should be es
timated in a variety of contexts. We only assayed fitness in 1 con
text in this experiment; it would be very interesting to see if, and 
how, the DFE changes in different contexts. Finally, experimental 
estimates of the DFE can be employed as strong priors in estimates 
of the DFE from standing polymorphism, which may have the 
added benefit of facilitating estimates of demographic parameters 
by de-confounding the selection from demography.

Data availability
Raw sequence data have been submitted to the NCBI BioProject 
database (https://www.ncbi.nlm.nih.gov/bioproject/) under ac
cession numbers PRJNA1083210 (RI(AI)Ls) and PRJNA429972 (par
ental MA lines). Cryopreserved stocks (G0 ancestor, parental MA 
lines and RI(AI)Ls) are available upon request to CFB. All code 
for analyses is available at https://github.com/Crombie-Lab/ 
manuscript_DFE/tree/main.

Supplemental material available at GENETICS online.
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