Transposon-mediated genic rearrangements underlie variation in small RNA pathways

Gaotian Zhang ${ }^{1, *}$, Marie-Anne Félix ${ }^{1, *}$, and Erik C. Andersen ${ }^{2, *}$

1. Institut de Biologie de l'École Normale Supérieure, Paris, Île-de-France, France
2. Biology Department, Johns Hopkins University, Baltimore, MD, USA

ORCID IDs: 0000-0001-6468-1341 (G.Z.); 0000-0003-0229-9651 (E.C.A.)
*CORRESPONDENCE: gzhang@bio.ens.psl.eu, felix@bio.ens.psl.eu, erik.andersen@gmail.com

Abstract

Transposable elements (TEs) are parasitic DNA sequences that insert into the host genome and can cause alterations in host gene structure and expression. Host organisms cope with the often detrimental consequences caused by recent transposition and develop mechanisms that repress TE activities. In the nematode Caenorhabditis elegans, a small interfering RNA (siRNA) pathway dependent on the helicase ERI-6/7 primarily silences long terminal repeat retrotransposons and recent genes of likely viral origin. By studying gene expression variation among wild C. elegans strains, we discovered that structural variants and transposon remnants at the eri-6/7 locus alter its expression in cis and underlie a trans-acting expression quantitative trait locus affecting nonconserved genes and pseudogenes. Multiple insertions of the Polinton DNA transposon (also known as Mavericks) reshuffled the eri-6/7 locus in different configurations, separating the eri-6 and eri-7 exons and causing the inversion of eri-6 as seen in the reference N2 genome. In the inverted configuration, gene function was previously shown to be repaired by unusual transsplicing mediated by direct repeats flanking the inversion. We show that these direct repeats originated from terminal inverted repeats specific to C. elegans Polintons. This trans-splicing event occurs infrequently compared to cis-splicing to novel downstream exons, thus affecting the production of ERI-6/7. Diverse Polinton-induced structural variations display regulatory effects within the locus and on targets of ERI-6/7-dependent siRNA pathways. Our findings highlight the role of host-transposon interactions in driving rapid host genome diversification among natural populations and shed light on evolutionary novelty in genes and splicing mechanisms.

Main

Transposable elements (TEs) are ubiquitous mobile DNA sequences. With their parasite-like nature and the invasive mechanisms of transposition, these selfish genetic elements propagate in host genomes and cause diverse mutations, ranging from point mutations to genome rearrangements and expansions ${ }^{1-3}$. They can even transfer horizontally across individuals and species, leading to movement of genetic material between widely diverged taxa ${ }^{4,5}$. To the hosts, recent TE insertions are mostly deleterious. Various pathways have evolved in hosts to repress expression and transposition of TEs ${ }^{6-9}$. By contrast, hosts can also benefit from TEs, because TE sequences can serve as building blocks for the emergence of protein-coding genes, noncoding RNAs, centromeres, and cis-regulatory elements ${ }^{10-12}$.

Small RNAs are widely used to repress expression of TEs and other genes ${ }^{6,7,9}$. In the nematode Caenorhabditis elegans, the helicase ERI-6/7-dependent small interfering RNAs (siRNAs) primarily target long terminal repeat (LTR) retrotransposons and pairs or groups of nonconserved genes and pseudogenes that show extensive homology and have likely viral origins ${ }^{9,13}$. The closest known species of C. elegans, Caenorhabditis inopinata, lost the eri-6/7 related small RNA pathway, which was suggested to have caused the expansion of transposons in its genome compared to C. elegans and another related species, Caenorhabditis briggsae ${ }^{9,14}$. In C. elegans, ERI-6/7 is required for the biogenesis of the Argonaute ERGO-1-associated endogenous siRNAs (Fig. 1a) ${ }^{13}$. Likely because endogenous and exogenous siRNA pathways share and compete for downstream resources ${ }^{15}$, mutants of eri-6/7 display enhanced RNA interference (RNAi) responses to exogenous dsRNAs ${ }^{16}$. Competition also exists among different endogenous siRNA pathways. Within the eri-6/7 locus, three other local open reading frames (eri-6[e], eri-6[f], and sosi-1) act independently of one another in a feedback loop to modulate the expression of ERI-6/7 and maintain a balance between different endogenous siRNAs (Fig. $1 \mathrm{a}, \mathrm{b})^{17}$.

In addition to the vital role of ERI-6/7 in RNAi pathways, its discovery ${ }^{16}$ revealed a highly unusual expression mechanism. Fischer and Ruvkun showed that eri-6 and eri-7, two adjacent genes oriented in opposing genomic directions in the C. elegans reference strain N2, employ a trans-splicing mechanism to generate fused eri-6/7 mRNAs encoding the helicase ERI-6/7 (Fig. 1a). They further demonstrated that a direct repeat flanking eri-6 facilitated the trans-splicing process (Fig. 1a). Remarkably, they also noticed variation of the locus within and between species: a single contiguous gene structure at the eri-6/7 locus was found in some wild
C. elegans strains and the C. briggsae reference strain AF16. However, the evolutionary history and consequence of the polymorphic variation remained unknown.

Expression quantitative trait loci (eQTL) are genomic loci that explain variation in gene expression across a species ${ }^{18}$. We recently conducted a genome-wide eQTL analysis among 207 wild C. elegans strains, using single nucleotide variants (SNVs) as markers ${ }^{19}$ (Extended Data Fig. 1a). Here, we show that the cis-acting eQTL of the eri-6/7 locus is associated with a genomic hotspot enriched for trans-acting eQTL of non-conserved genes and pseudogenes, including known ERI-6/7-dependent siRNA targets. We identify structural variation underlying the eri-6/7 eQTL, including a distinct gene structure and multiple TE remnants. Our results further demonstrate that the insertion of multiple copies of the virus-like DNA transposon, Polinton ${ }^{20,21}$, might have caused gene inversion and fission of a single ancestral eri-6-7 gene. Although some wild strains still possess the single eri-6-7 gene, other strains such as N 2 evolved the eri-6/7 trans-splicing mechanism to compensate for the eri-6 inversion. The direct repeats used for trans-splicing originated from the terminal inverted repeats (TIRs) of Polintons. The neighboring putative genes eri-6[e], eri-6[f], and sosi-1 are affected by other Polinton-induced structural variants and could have acquired their regulatory functions because of the inversions. Taken together, the eri-6/7 gene structure polymorphisms and further structural variants at the locus impart sophisticated regulatory effects on the biogenesis of the ERI-6/7 helicase, downstream siRNAs, and the expression of their novel gene targets.

Results

Natural variation in eri-6 underlies differential expression of non-conserved genes and pseudogenes

The genes eri-6 and eri-7 are next to each other in an opposite head-to-head orientation at 4.454.47 Mb on chromosome I in the N2 reference genome (WS283) ${ }^{22}$ (Fig. 1b). The eri-6 gene has had a changing transcript annotation in Wormbase ${ }^{22}$ because of a variety of rare splicing events. Presently, it includes six isoforms [a-f] that do not all share exons: eri-6[a-d] share their first seven exons (hereafter "ERI-6 exons", which encode the ERI-6 portion of ERI-6/7) and short downstream exons, some of them quite distant; eri-6[e] and eri-6[f] do not share ERI-6 exons but are transcribed from distinct downstream exons (Fig. 1b). Because the small downstream exons of eri-6[a-d] do not contribute many RNA-seq reads, we used the combined expression
of eri-6[a-d] as a proxy for the total expression of ERI-6 exons (Extended Data Fig. 1b). We investigated the genetic basis of expression variation (eQTL) for ERI-6 exons, eri-6[e], eri-6[f], and other protein-coding genes in C. elegans (See Methods and our previous study ${ }^{19}$, Supplementary Tables 1, 2). Here, we focused on eQTL related to the eri-6/7 locus.

We classified eQTL into local and distant eQTL based on the location of the QTL in the genome relative to its expression targets ${ }^{19}$ (Extended Data Fig. 1a, Supplementary Table 2). At the threshold used (see Methods), we detected local eQTL for expression variation in ERI-6 exons, eri-6[e] and eri-6[f] (Fig. 1c, Supplementary Table 2). Fine mappings of these local eQTL identified the top candidate variant ($1: 4,464,670$), a missense mutation (259D>259Y) in the coding region of eri-6[e]. Strains with the alternative allele at this site showed significantly lower eri-6[e] and eri-6[f] expression than strains with the reference allele but higher expression in ERI6 exons (Fig. 1d). Because eri-6[e] was found to repress the expression of ERI-6 exons (Fig. 1a) ${ }^{17}$, it is possible that the alternative non-synonymous allele at the eri-6[e] variant could repress the expression of eri-6[e], which then would enhance expression of ERI-6 exons.

Expression variation in ERI-6 exons could further affect the production of the ERI-6/7 helicase, the biogenesis of siRNAs in the ERGO-1 pathway, and finally the expression of target genes (Fig. 1a). We found that 13 transcripts of 12 genes across the genome, including four known targets of ERI-6/7-dependent siRNAs ${ }^{13}$, have their distant eQTL (I: 4.3-4.7 Mb) located nearby the eri-6/7 locus (Fig. 1e, Extended Data Table 1, Supplementary Table 2). Fine mappings of these distant eQTL also identified the $\mathrm{I}: 4,464,670$ eri-6[e] variant as the top candidate (Extended Data Table 1). These transcripts showed significantly lower expression in strains with the alternative allele than strains with the reference allele (Extended Data Fig. 1c). Their expression also exhibited negative correlations with ERI-6 exons but positive correlations with eri-6[e] expression (Fig. 1f). As mentioned above, pseudogenes and non-conserved genes are among the primary targets of the ERI-6/7-dependent siRNAs ${ }^{9,13}$. Nine of 12 genes are pseudogenes and seven of them lack known orthologs in other species ${ }^{22}$ (Extended Data Table 1). Taken together, all these 12 genes are potential targets of ERI-6/7-dependent siRNAs. Genetic variation at the eri-6/7 locus functions as a trans-acting hotspot to regulate expression of target genes across the genome using the siRNA pathways.

Fig. 1: Expression variation in eri-6 potentially mediates a trans-acting eQTL hotspot. a, Graphic illustration of the ERI-6/7-dependent siRNA pathways and the feedback loop. Dark blue arrows indicate direct repeats. Pink and blue rectangles indicate exons on the plus and minus strand, respectively (The same color scheme is used in the following figures). Created using BioRender. b, Structures of genes and isoforms at the eri-6/7 locus in the reference genome (WS283) ${ }^{22}$. c, e, Manhattan plots indicating the GWAS mapping results of transcript expression traits on chromosome I for ERI-6 exons, eri-6[e], and eri-6[ff (c) and ten transcripts across the genome (e). Each point represents a SNV that is plotted with its genomic position (x-axis) against its - $\log 10(p)$ value (y-axis) in mappings. SNVs that pass the 5% FDR threshold are colored gold and purple for local and distant eQTL, respectively. Transcripts of pseudogenes are indicated. d, Tukey box plots showing expression ($-\log _{2}($ normalized TPM +0.5)) variation of five transcripts at the eri-6/7 locus between strains with different alleles at the top candidate SNV (I: 4,464,670). Statistical significance of each comparison is shown above and was calculated using the twosided Wilcoxon test and was corrected for multiple comparisons using the Bonferroni method. f, Correlations of expression variation of two transcripts to expression variation of ERI-6 exons and eri-6[e]. Each point (d, f) represents a strain and is colored orange and blue for strains with the reference (REF) or the alternative (ALT) allele at the SNV, respectively.

We hypothesized above that the eri-6[e] candidate variant could affect the expression of eri-6[e], ERI-6 exons, and potential siRNA targets. However, it was unclear why the variant was
also associated with eri-6[f] and sosi-1 expression variation (Fig. 1d). We used CRISPR-Cas9 genome editing to individually introduce the two alleles of the candidate eri-6[e] variant into different genetic backgrounds and showed that this variant did not underlie the local eQTL of eri-6 (Extended Data Fig. 2) nor the distant eQTL of potential targets.

Two of the strains (CB4856 and MY18) in our expression dataset with an alternative allele at the eri-6[e] variant were previously found to have eri-6 and eri-7 on the same (Crick) strand, similar to the eri-7 ortholog in the reference genomes of the species C. briggsae and C. brenneri (Fig. 2) ${ }^{16,22}$. We thus focused on structural variants, which were not included in the eQTL mapping because of the difficulty in characterizing them. We first studied them at the genomic level to uncover the diversity of structural variants, then discovered their transposon origin and finally demonstrated the association of these structural polymorphisms with a diversity of gene expression phenotypes.

High diversity of structural variants and TE insertions throughout the eri-6/7 locus

Long-read genome assemblies of 17 wild C. elegans strains are presently available ${ }^{23-26}$, in addition to the reference strain N2. We first performed a multiple pairwise alignment of the eri6/7 region among these strains (Fig. 2, Extended Data Fig. 3a) ${ }^{23-27}$. Nine of the 17 strains are approximately identical to the reference strain N 2 in this region, with eri-6 on the Watson strand (pink in figures) and eri-7 on the Crick strand (blue in figures). Hereafter, the first seven exons of eri-6 in the N2 reference orientation are called "Watson ERI-6 exons". The strain JU1400 has a 2.8 kb duplication that includes the Watson ERI-6 exons and one copy of the direct repeats that flank ERI-6 exons (Fig. 2).

The other seven strains harbor a large diversity of deletions, insertions, and inversions compared to the reference genome. The two strains ECA396 and JU2526 have a largely inverted sosi-1 gene compared to the N2 strain, two different sosi-1 fragments, and several other insertions (Fig. 2, Extended Data Figs. 3a, 4a). The remaining five strains show inversion of ERI6 exons compared to the N2 strain (hereafter "Crick ERI-6 exons" when in the same orientation as eri-7): the strains XZ1516, ECA36, and NIC526 also lack the direct repeats that flank ERI-6 exons and include a $\sim 1.7 \mathrm{~kb}$ insertion between their Crick ERI-6 exons and sosi-1; the strains CB4856 and DL238 have retained most of the direct repeat sequences and show multiple large insertions with sizes up to ~ 8 kb within eri-7 and surrounding the Crick ERI-6 exons (Fig. 2, Extended Data Fig. 3a). The Crick orientation of the ERI-6 exons in these five strains likely
represents the ancestral genetic structure at the eri-6/7 locus, based on the following: 1) eri-6-7 orthologs in C. briggsae and C. brenneri show a simple continuous structure on a single strand (Fig. 2); 2) the XZ1516, ECA36, CB4856, and DL238 strains were found to have patterns of ancestral genetic diversity in the C. elegans species ${ }^{28-30}$ (Extended Data Fig. 5).

Fig. 2: Hyper-variable structural variants and TEs at the eri-6/7 locus. Graphic illustration of DNA sequence alignment at the eri-6/7 locus in the 18 C. elegans (Ce) strains with genome assemblies. The gene structures of the C. briggsae reference (Cbr-ref) eri-7 and its best match homolog in C. brenneri reference (Cbn-ref) are shown on top. The exon structures of the C. elegans strains are shown based on the reference N2 genome. Regions with a potential transposon origin are indicated as colored single-headed arrows, with the color indicating the type of transposon and the arrow direction representing their potential coding orientation when inserted. Double-headed arrows indicate duplications. ERI-6 exons are shaded gray. Detailed alignment to the reference of regions with labels "tir1-5" (for terminal inverted repeats), "plt1-4" (for Polintons), and "ss1-6" (for sosi-1) are shown in Extended Data Fig. 4.

This structural diversity corresponds to an astonishing diversity of polymorphic TEs within the 18 kb locus (Fig. 2, Extended Data Fig. 3a). First, a 435-bp fragment of CELETC2 (a nonautonomous Tc2-related DNA transposon) ${ }^{22}$ resides in the $\sim 1.7 \mathrm{~kb}$ insertion on the right of Crick ERI-6 exons in the strains XZ1516, ECA36, and NIC526. Second, two different fragments
(354-bp and 299-bp) of the unclassified transposon $\mathrm{CeOOO179}{ }^{22}$ constitute most of the 838 -bp insertion within eri-7 in the strains CB4856, DL238, and ECA396. Third, a full-length CEREP1A (a putative nonautonomous 3.4-kb DNA transposon likely using HAT-related transposase for propagation $)^{22}$ was found in both the CB4856 and DL238 strains, and the CB4856 strain has two other CEREP1A fragments immediately upstream in the opposite orientation. Fourth, the strain ECA396 has a full-length Tc4v (a variant class of the DNA transposon Tc4) ${ }^{22,31}$ within the first exon of eri-6[f]. Fifth, we found multiple TE insertions from a family of autonomous doublestranded DNA transposons derived from viruses, called Polintons ${ }^{20,21}$. Four different sizes of Polinton remnants were identified at this locus in the strains CB4856, DL238, ECA396, and JU2526 (Fig. 2).

The direct repeats allowing eri-6/7 trans-splicing originate from Polintons

Polintons (a.k.a. Mavericks) were identified across unicellular and multicellular eukaryotes and proposed to transpose through protein-primed self-synthesis ${ }^{5,20,32}$. They code numerous proteins, including two core components, a protein-primed DNA polymerase B (pPoIB1) and a retroviral-like integrase (INT), and different capsid proteins ${ }^{20,21}$. The different Polinton remnants we found at the eri-6/7 locus in wild strains are all likely from the pPolB1 end of the Polinton1_CB (named after the Polintons in C. briggsae, Extended Data Figs. 4b) ${ }^{22}$. In the reference genome of C. elegans, three partial copies of Polinton-1_CB have been identified at 10.30-10.32 Mb (WBTransposon00000738) and 13.08-13.10 Mb (WBTransposon00000637) on chromosome I and at $17.25-17.27 \mathrm{Mb}$ (WBTransposon00000739) on chromosome X , with lengths ranging from 13.4 to $15.4 \mathrm{~kb}^{22}$. We found 744-bp inverted repeats perfectly flanking WBTransposon00000738 (Extended Data Figs. 4b, Supplementary Table 3) and partially flanking the other two Polintons in the genome of the reference strain N2. We hypothesized that these inverted repeats were specific terminal inverted repeats (TIRs) of Polintons in C. elegans. They were previously not regarded as Polintons because C. briggsae Polinton consensus sequences were used to identify Polintons in C. elegans. To examine the validity and species specificity of the TIRs, we first identified potential Polintons by searching colocalization (within 20 kb) of pPoIB1 and INT in the genomes of 18 C. elegans and three C. briggsae strains (Extended Data Figs. 6). We identified three to nine potential Polintons in each C. elegans strain and 13 to 15 in each C. briggsae strain. Complete or partial sequences of the 744-bp TIRs were flanking 63 of the total 107 Polintons in the 18 C. elegans strains but none in the three C. briggsae strains (Extended Data Figs. 6). We
also found colocalization of pPoIB1 and the TIR but not INT at 10 loci, including but not limited to the eri-6/7 locus in C. elegans genomes of both N2-like strains and the divergent strains (Extended Data Figs. 6a). Furthermore, all significant NCBI BLAST ${ }^{33}$ results in the query of the TIR sequence are from C. elegans. Taken together, the 744-bp TIRs are components of Polintons specifically in C. elegans, termed Polinton_CE_TIR. We distinguish them from the annotated Caenorhabditis Polinton-1_CB.

The Polinton_CE_TIR sequences are present as direct repeats instead of inverted repeats exclusively at the eri-6/7 locus in the reference N2, the nine N2-like strains, JU1400, JU2526, and ECA396 (Fig. 2, Extended Data Figs. 6a). In fact, ~ 700 bp of the $\sim 930-$ bp direct repeats that facilitate trans-splicing are exactly Polinton_CE_TIR (Extended Data Figs. 3b, Supplementary Table 3). The repeat sequences also include new putative TF binding sites for transcriptional regulation (Extended Data Fig. 3c). Therefore, strains such as the reference N2 use components of Polintons to compensate for the disruptive gene inversion that was likely caused by the Polintons themselves.

Multiple Polinton copies likely mediated inversions and other structural rearrangements

To evaluate the diversity of this locus using a larger set of strains, we obtained short-read wholegenome sequencing (WGS) data of 550 isotype strains, aligned to the reference N 2 , representing 1384 wild strains from the Caenorhabditis Natural Diversity Resource (CaeNDR, 20220216 release) ${ }^{34}$. We aimed to detect inversions and other structural variants in the species using information of split reads and mapping coverages (See Methods) and relate them to the SNV haplotypes in the region.

We identified diverse structural variants within the eri-6/7 locus among the 550 wild strains (Extended Data Figs. 3d, 7, Supplementary Table 4): (1) inversions, 93 strains have Crick ERI-6 exons and 34 strains have partial inversions of sosi-1 (INVsosi-1) (Extended Data Fig. 7a); (2) Polinton insertions, 48 strains likely have partial remnants of the pPoIB1 end of the Polinton1_CB (Extended Data Fig. 7a); (3) lack of reference genes (which might result from deletion or maybe an ancestral lack of insertion), 14 strains lack the reference sosi-1, eri-6[e], and eri-6[f], whereas two strains only lack eri-6[e] and eri-6[f] (Extended Data Fig. 7b, d); (4) deletions, 13 strains showed a ~250-bp deletion mostly spanning the 3'UTR of eri-6[f]; (5) duplications, the strain JU1896, might have duplications of eri-6[e] and eri-6[f]; (6) high heterozygosity in sosi-1, 80 strains with the reference sosi-1 might have a second copy of sosi-1 beyond the locus, which
was also possessed by three of the 14 strains lacking the reference sosi-1 (Supplementary Table 4).

The short-read data are limited in their ability to detect the full extent of structural variants. However, we observed Polintons (Polinton_CE_TIR and Polinton-1_CB) at multiple sites throughout the eri-6/7 locus (Extended Data Fig. 7a), especially at flanking regions of ERI-6 exons and sosi-1. TEs have been associated with chromosomal rearrangements since their first discoveries ${ }^{1}$. Ectopic recombination between TE copies or alternative transposition mechanisms could cause structural variants such as inversions, duplications, or deletions ${ }^{2}$. We reasoned that the inversions of ERI-6 exons and sosi-1 were possibly induced by homologous recombination between the flanking Polintons or simply the TIRs.

To understand the evolutionary relationships of the 550 strains at eri-6/7 and group them, we performed a haplotype network analysis using the 95 SNVs within the locus (Fig. 3). We observed and defined two major groups, "Single eri-6-7" and "Reverse-oriented eri-6,7", with 112 and 438 strains, respectively (Fig. 3). As expected, a Crick orientation of ERI-6 exons was detected for all strains in the "Single eri-6-7" group, except 17 strains that were clustered with CB4856 and DL238. We hypothesized that all these 17 strains also have the original Crick orientation of ERI-6 exons, but with large Polinton remnants in between them and eri-7: we defined them as "CB4856-like" strains together with the strains DL238 and ECA1186 (Fig. 3). The "Reverse-oriented eri-6,7" group of strains includes the reference strain N2 and likely all have Watson ERI-6 exons and the direct repeats for trans-splicing (Extended Data Figs. 3d, 7b, c, Supplementary Table 4). Most strains in this group are clustered with N2, whereas the strain ECA396 and 19 other strains formed a second cluster based on SNVs and likely all have INVsosi1 (Fig. 3). Remnants of Polinton-1_CB were found in both groups, but mostly in CB4856-like strains and strains with INVsosi-1 (Fig. 3). Strains with deletion polymorphisms in eri-6[e], eri-6[f], and sosi-1 formed two clusters exclusively in the "Single eri-6-7" group (Fig. 3). It is challenging to associate these structural variants with Polintons or other TEs. Nevertheless, these deletions and duplications might also affect expression of eri-6/7 and siRNA pathways.

Fig. 3: Haplotype network with clustered strains sharing structural variation. Neighborjoining net depicting 550 strains based on 95 SNVs within the eri-6/7 locus. Two major groups, "Single eri-6-7" and "Reverse-oriented eri-6,7", were defined based on orientation of ERI-6 exons and denoted with dark green and orange curves. Subgroups with other structural variations were indicated using thin curves and labels ("w/o" for deletions or no insertions, "DEL" for deletions, and "DUP" for duplications). Strain names are colored in green and purple for detection of Crick ERI-6 exons and inversion of sosi-1 (INVsosi-1), respectively, using short-read WGS data in Extended Data Fig. 7a. Dark blue circles and red triangles next to strain names represent strains with Polinton_CE_TIR (TIRs only) and Polinton-1_CB (TIRs excluded) insertions, respectively, based on Extended Data Figs. 3d, 7 and manual inspection of genome alignments. Some strains (st) share all alleles of the 95 SNVs and all detected structural variations are collapsed to only show a representative strain followed by the number of strains with this eri-6/7 haplotype (e.g. "N2 +376st"). Trapezoidal junctions indicate that some recombination occurred within the locus.

Cis-and trans-effects of Polinton-induced structural variants on gene expression

Among the 550 wild C. elegans strains, $\sim 20 \%$ likely have a single "classical" eri-6-7 gene to encode the ERI-6/7 protein, as in C. briggsae and C. brenneri. The remaining $\sim 80 \%$ strains make a fused eri-6/7 mRNA by some amount of trans-splicing between the pre-mRNAs of the Watson ERI-6 exons and eri-7 as in the reference strain N2. Though trans-splicing compensates inversion of ERI-6 exons to continue ERI-6/7 production, Fischer and Ruvkun could not consider whether the reverse-oriented eri-6/7 gene structure might represent a hypomorphic form of the locus compared to the ancestral, compact gene. We thus turned our focus back to gene expression consequences of structural variants, which could affect expression at two levels: the expression abundances of different exons and their splicing.

We first examined local regulatory effects at the eri-6/7 and sosi-1 locus, starting with diversity among strains having the Crick ERI-6 exons and eri-7. The strains with a potential compact eri-6-7 gene (green box color in Fig. 4a) expressed both parts of the gene at similar levels, as expected, and expressed low levels of eri-6[e], eri-6[f], and sosi-1. The exception in this group is the two strains ECA703 and ECA812, which do not have eri-6[e], eri-6[f], and sosi1 and showed low expression in ERI-6 exons and ref-eri-7 (mRNA sequences of eri-6[a-d] and eri-7 in the N2 reference, respectively) (Figs. 3, 4a, Supplementary Table 4). Because eri-6[e], eri$6[f]$, and sosi-1 were found to repress eri-6/7 expression in the reference strain $N 2^{17}$, their putative deletions could cause elevated expression of ERI-6 exons and eri-7. These observations suggest that other linked genetic variation at the locus reduces expression of ERI-6 exons and ref-eri-7 or that eri-6[e], eri-6[f], and sosi-1 function differently in strains of the "Single eri-6-7" group. The strain JU1896, which likely has a duplication in eri-6[e] and eri-6[f] showed higher expression in both (Figs. 3, 4a, Extended Data Fig. 7d). The subgroup of CB4856-like strains (blue color), with large Polinton remnants between ERI-6 exons and the downstream ERI-7 exons (Fig. 2), exhibited significantly elevated expression in ERI-6 exons and significantly decreased expression in ref-eri-7: the large intronic insertion likely affects transcription of the downstream exons, i.e., eri-7.

The second large group of strains, those in the "Reverse-oriented eri-6, 7" group (orange and purple colors), showed significantly lower expression in ERI-6 exons and significantly higher expression in eri-6[e], eri-6[f], and sosi-1 than strains in the "Single eri-6-7" group (Fig. 4a, Supplementary Table 5). The lower expression ERI-6 exons might be the result of either enhancer/promoter rearrangement or deficiencies in splicing or poly-A tail formation making the
mRNA less stable. By contrast, these strains exhibited a similar level of expression of the ref-eri7 to the "Single eri-6-7" group. The subgroup of strains with INVsosi-1 (purple color) showed significantly lower expression in both sosi-1 and ERI-6 exons than other strains in the "Reverseoriented eri-6,7" group. Those strains with genome assemblies show large Polinton remnants upstream of sosi-1 (Fig. 2), which could explain the lower expression of sosi-1 and perhaps render mRNAs of ERI-6 exons unstable. In summary, the diverse structural variations correlate with their expected effect on the eri-6/7 locus between and within the two large structural variant groups.

Fig. 4: Structural variations at the eri-6/7 locus regulate genes in cis and trans. a,c, Tukey box plots showing expression (- $\log _{2}$ (normalized TPM+0.5)) variation of five transcripts at the eri$6 / 7$ locus (a) and nine transcripts (c) across the genome that include known targets of siRNAs requiring the ERI-6/7 helicase, among strains with major and minor structural variations (SVs) within the locus. Each data point represents a strain, color-coded by SVs. Each box is colored
by major SVs. Box edges denote the $25^{\text {th }}$ and $75^{\text {th }}$ quantiles of the data; and whiskers represent $1.5 \times$ the interquartile range. Statistical pairwise comparison results using two-sided Wilcoxon tests and Bonferroni corrections were presented in Supplementary Table 5. b, Percent of spanning RNA-seq reads at the end of the last (seventh) ERI-6 exon that were spliced to eri-7 when mapped to the reference genome, for 207 strains. Each point represents one strain and is colored by SVs. Graphic illustration of structural variation within the eri-6/7 locus was created using BioRender.

Different splicing mechanisms between the two groups further alter the efficiency of the ERI-6/7-dependent siRNA pathways. In strains with a single eri-6-7 gene, the ERI-6/7 protein is produced through standard transcription and translation. In contrast, strains with reverseoriented eri-6,7 perform separate transcription of pre-mRNAs in opposite orientation and transsplicing ${ }^{16}$, which could reduce the efficiency of ERI-6/7 production. We analyzed spanning reads in the RNA-seq data of 207 strains to compare their splicing efficiency between the seventh exon of eri-6 and the first of eri-7 (Fig. 4b). In strains with a single eri-6-7 gene, most split RNA-seq reads at the end of the Crick ERI-6 exons should have their chimeric alignment to ERI-7 exons through cis-splicing. In strains with the Watson ERI-6 exons, split RNA-seq reads at the end of ERI-6 exons could splice to downstream exons for eri-6[b-d] or partially map to ERI-7 exons because of trans-spliced eri-6/7 mRNAs ${ }^{16}$ (Fig. 4b). Indeed, among the 207 strains in our RNAseq dataset, all 16 strains with a single eri-6-7 gene showed higher than 90% and mostly 100% splicing between ERI-6 and ERI-7 exons. Instead, the 183 strains with reverse-oriented eri-6,7 but not INVsosi-1 showed a median of 10% and a maximum of 32% trans-splicing (Fig. 4b). In conclusion, the evolutionary inversion of eri-6 does affect the synthesis of full-length eri-6/7 mRNA.

Together, the expression level of ERI-6 and ERI-7 exons and their splicing rate alter the biogenesis of the helicase ERI-6/7. Strains with a single eri-6-7 gene but no extra insertions or deletions might generate the most abundant ERI-6/7 because of their high expression in ERI-6/7 exons and mostly 100% cis-splicing (Fig. 4a, b). The reverse-oriented eri-6/7 gene structure represents a hypomorphic form of the locus, because strains in this group showed decreased expression of ERI-6 exons and low splicing rate between ERI-6/7 exons (Fig. 4a, b), which likely causes reduced ERI-6/7 protein.

The structural variants showed various local effects on gene expression but their influences likely extend beyond the locus because of the pivotal role of ERI-6/7 in C. elegans endogenous siRNA pathways (Fig. 1a). Differences in ERI-6/7 abundances will affect the generation of ERGO-1 dependent siRNAs and repression of their target genes. Among the
putative targets of ERI-6/7-dependent siRNAs from our eQTL analysis, we observed significantly lower expression in strains in the "Single eri-6-7" group than strains in the "Reverse-oriented eri6,7" group (Fig. 4c, Supplementary Table 5). We also found potential effects of structural variants in the CB4856-like strains on target expression variation within the "Single eri-6-7" group. Altogether, these results demonstrate that diverse structural variants at the eri-6/7 locus altered C. elegans endogenous siRNA pathways from the production of the ERI-6/7 helicase to the expression of target genes.

Discussion

Evolutionary genomic history of the eri-6/7 locus driven by Polintons

Most strains with a single eri-6-7 gene were isolated from the Hawaiian Islands or the Pacific region, where the highest known genetic diversity in the C. elegans species is found, (Fig. 3, Extended Data Figs. 5, 8), which likely reflects the retention of ancestral diversity ${ }^{28-30}$. Strains with an inversion of ERI-6 exons, however, are more widely distributed over the world and predominant in Europe. This set of strains show reduced genetic diversity at the locus, in agreement with an evolutionary-derived inversion of ERI-6 exons from the Crick to the Watson strand within the species (Extended Data Figs. 5, 8) ${ }^{30}$.

We thus favor the following scenario of evolution at the eri-6/7 locus (Fig. 5). The eri-6/7 gene was ancestrally coded as a single gene as in C. briggsae and C. brenneri, without Polinton insertions. The lack of eri-6/7 homolog in C. inopinata ${ }^{14}$ prevents us from using it as a closer outgroup. The ancestor of all C. elegans strains likely conserved the compact single eri-6-7 gene structure as in C. briggsae and C. brenneri. Some strains, such as XZ1516, likely kept this ancestral single eri-6-7 gene with no trace of Polintons (Figs. 2, 5). Alternatively, in these strains, the Polintons were fully eliminated from the eri-6/7 locus, yet the parsimonious explanation is that Polintons invaded the locus after the speciation of C. elegans.

We found Polinton remnants in the genome of every C. elegans strain with available WGS data at CaeNDR (Extended Data Fig. 6). At some time during the evolutionary history of C. elegans, a Polinton copy transposed, likely from another location in the genome or through horizontal transfer, and interrupted the eri-6/7 gene with a large insertion on the left side of ERI6 exons. No strain in our dataset retains a full Polinton at the locus, thus this Polinton was either a partial copy when it transposed or subsequently became largely deleted. In strains such as

CB4856, the still large Polinton remnants ($\sim 5 \mathrm{~kb}$ in CB4856) appear to impair eri-7 transcription (Figs. 4a, 5).

Further Polintons insertions occurred in the vicinity, including perhaps to the right side of ERI-6 exons (Figs. 2, 5). The occurrence of several Polinton copies at the same locus may have favored ectopic recombination between inverted sequences and the ERI-6 exon inversion (Fig. 5). Surviving descendants of this inversion, such as the ECA396 and N2 strains, use repeats from Polintons for trans-splicing and thus maintain a hypomorphic eri-6/7 function (Figs. 4c, 5). Meanwhile, the inversion activated eri-6[e] and eri-6[f], which were barely expressed in most strains with a single eri-6-7 gene, at least in the tested conditions (Figs. 4a, 5). Ancestors of the reference strain N2 eliminated other Polinton fragments from the locus, except for the direct repeats that are necessary for trans-splicing. Strains such as JU1400 evolved a duplication of the Watson ERI-6 exons and one copy of the direct repeat, which may increase the number of correctly spliced eri-6/7 transcripts (Figs. 2, 5). Polintons might have caused more structural variations such as INVsosi-1 (Figs. 2, 5, Extended Data Fig. 7).

The actual evolutionary process within this locus must be more complex than the model proposed above. The Polinton insertions could have occurred through sudden bursts of transposition instead of gradually. Sudden environmental stress might have caused the high transposition rate of Polintons and the other four TEs (Fig. 2). Overall, the large number of transposon insertions at this locus regulating small RNA pools and thereby transposons support the hypothesis of a presumed battle between TE insertions and genomic rearrangement to preserve ERI-6/7 function to combat further TE activity. Only through further investigations of gene expression and TE positions in de novo assemblies will we learn more about the broad evolutionary significance of this type of battle.

Fig. 5: Possible scenario for evolution at the eri-6/7 locus with Polintons. Purple and light blue worms on the tree represent nodes with or without actual strains, respectively, to the best of our knowledge. Rectangles for different segments of eri-6/7 were filled with gradient colors to indicate expression level across segments and branches on the tree. Black triangles inside rectangles represent orientation of gene segments. Dark blue triangles represent repeats. Red curved lines indicate Polintons other than the repeats. Created using BioRender.

Phenotypic effect of the structural variation at eri-6/7 on siRNA pathways and their targets
With the ERGO-1 Argonaute, the ERI-6/7 helicase is required for production of endogenous primary 26G siRNAs by non-canonical Dicer processing of target mRNAs ${ }^{13}$. Secondary siRNAs are produced by an amplification machinery, for which different pools of primary siRNAs compete ${ }^{15,35}$, including endo-siRNAs dependent on Argonautes ERGO-1 and ALG-3/4, the genomically encoded piRNAs, and the siRNAs derived from exogenous double-stranded RNAs ${ }^{13,16,36-38}$. Depending on the genomic and environmental contexts, genetic variation favoring one or the other primary siRNA pathway could have been selected ${ }^{39-42}$. Research in mammals has shown the importance of dosage of the orthologous MOV10 helicase on retrovirus silencing ${ }^{43}$. We showed here that natural structural variants at the eri-6/7 locus were a major driver of variation in ERGO-1 pathway activity and mRNA levels of its downstream regulated targets. Two events, likely driven by Polintons, lowered ERI-6/7 pathway activity, and increased piRNA-dependent and exogenous RNAi pathways: (1) the initial insertion of a Polinton within the eri-6/7 gene and (2) the inversion of ERI-6 exons. Other events might have acted in the reverse direction: the deletion of most of the intervening Polintons, the retention of direct repeats used in trans-splicing and, in the strain JU1400, the duplication of the inverted ERI-6 exons. Because ERI-6/7-dependent siRNAs primarily target retrotransposons and unconserved, duplicated genes, with few introns, potentially of viral origins ${ }^{9,13}$, the insertion of the Polintons and the resulting inversion could have at least transiently increased expression of novel genes and retrotransposons, while repressing exogenous dsRNAs.

However, it is unclear what the effect might have been on Polintons themselves. Since their recent discovery in C. elegans, their possible regulation by small RNAs remains to be studied. The DNA polymerase of Polintons might be an ancient target of ERI-6/7-dependent siRNAs, because the gene E01G4.5, a known target of ERI-6/7-dependent siRNAs in C. elegans, encodes a protein that has homology to viral DNA polymerases ${ }^{9,13}$. Polintons might also bring novel genes within them ${ }^{5}$, which are potential targets of the ERGO-1 or piRNA pathways. The genes sosi-1, eri-6[e], and eri-6[f] are absent at the eri-6/7 locus in a subset of Hawaiian strains showing the most divergent eri-6/7 region based on SNVs (Fig. 3). It is tempting to suggest that they appeared at this locus during the evolution of the species. The eri-6[f] exons are highly similar to another locus in the genome ${ }^{17}$. The gene sosi-1 keeps additional copies in some wild strains and is a distant paralog of eri-7 and other helicases in its C-terminal part. Further research
can test whether sosi-1, eri-6[e], and eri-6[f] have been carried by a Polinton transposon. Similarly, the mode of duplication of the ERI-6/7 targets remains to be investigated.

Detailed genetic studies in the N2 reference strain have uncovered intricate regulatory interactions at the eri-6/7/sosi-1 locus and between this locus and the splicing machinery. First, in the N2 strain, in part through matching piRNAs, eri-6[e], eri-6[f], and sosi-1 are strong ERI-6/7independent siRNA targets ${ }^{17}$. Their downregulation by MUT-16-dependent siRNAs enables eri6/7 expression, perhaps by spreading chromatin marks ${ }^{17}$. This regulation has been proposed to act as a negative feedback loop balancing ERGO-1 dependent secondary siRNAs and other secondary siRNA classes. Second, the use of the Polinton repeats as trans-splicing signal partially rescues the production of ERI-6/7. This peculiar mechanism of eri-6/7 trans-splicing was proposed to act as a compensatory sensor of the splicing machinery, enabling more exogenous RNAi when an overwhelmed splicing machinery increases endo-siRNA production on poorly spliced genes ${ }^{44}$. It remains unclear whether these seemingly intricate effects on siRNA pools in the N2 reference strain are an evolutionary leftover of transposon-driven structural variation at the locus. We hypothesize that across the evolutionary history of C. elegans, different siRNA pools may have been successively favored by natural selection. Alternatively, successive structural variants could have endowed the eri-6/7 locus with physiological regulatory loops used in balancing the different siRNA classes downstream of environmental and organismal inputs.

To conclude, our work dissected a distant eQTL hotspot and identified diverse TEs and structural variations within the eri-6/7 locus underlying variation in C. elegans endogenous siRNA pathways. This locus appears to have been the target of a large number of TE insertions including multiple copies of the otherwise rare Polinton transposon, which may have caused high genetic diversity at the locus through genome rearrangements. Some C. elegans strains evolved an odd trans-splicing mechanism to maintain hypomorphic function of the locus, using Polinton TIRs that came to form direct repeats. The remarkable interactions between hosts and TEs play a major role in genome rearrangements and the regulation of gene expression.

Methods

Genomic and transcriptomic data

We obtained the reference genomes of C. elegans (N2) and C. briggsae (AF16), the GTF files of C. elegans, C. briggsae, and C. brenneri, from WormBase (WS283) ${ }^{22}$; the de novo assemblies of 17 wild C. elegans strains (CB4856, DL226, DL238, ECA36, ECA396, EG4725, JU310, JU1395,

JU1400, JU2526, JU2600, MY2147, MY2693, NIC2, NIC526, QX1794, XZ1516) and two wild C. briggsae strains (QX1410, VX34) from the NCBI Sequence Read Archive (SRA projects PRJNA523481, PRJNA622250, PRJNA692613, PRJNA784955, and PRJNA819174) ${ }^{23-27}$, the alignment of whole-genome sequence data in the BAM format of 550 wild C. elegans strains, the soft- and hard-filtered isotype VCF from the Caenorhabditis Natural Diversity Resource (CaeNDR, 20220216 release) ${ }^{34}$; the Illumina RNA-seq FASTQ files of 608 samples of 207 wild C. elegans strains from the NCBI SRA (projects PRJNA669810) ${ }^{19}$.

RNA-seq mapping and eQTL analysis

To put transcriptomic data on the same page with the genomic data, we re-mapped RNA-seq reads using the C. elegans reference genome (WS283), the GTF file (WS283), and the pipeline PEmRNA-seq-nf (v1.0) (https://github.com/AndersenLab/PEmRNA-seq-nf). Then, we selected reliably expressed transcripts, filtered outlier samples, and normalized expression abundance across samples using the R scripts counts5strains10.R, nonDivergent_clustered.R, and norm_transcript_gwas.R (https://github.com/AndersenLab/WI-Ce-eQTL/tree/main/scripts), respectively, as previously described ${ }^{19}$. In summary, we collected reliable expression abundance for 23,349 transcripts of 16,172 genes (15,449 protein-coding genes and 723 pseudogenes) from 560 samples of 207 strains. We also used STAR (v2.7.5) ${ }^{45}$ to identify chimeric RNA-seq reads in the 560 samples.

We further used our recently developed GWAS mapping pipeline, Nemascan ${ }^{46}$, to identify eQTL for the 23,349 transcript expression traits (Supplementary Table 1), following the steps outlined previously ${ }^{19}$. Briefly, we randomly selected 200 traits and permuted each of them 200 times. For each of the 40,000 permuted traits, we used the leave-one-chromosome-out (LOCO) approach and the INBRED approach in the GCTA software (v 1.93 .2$)^{47,48}$, and calculated the eigen-decomposition significance (EIGEN) threshold as $-\log _{10}\left(0.05 / N_{\text {test }}\right)$ to identify QTL.

We determined the 5\% false discovery rate (FDR) significance threshold for LOCO and INBRED, respectively, by calculating the $95^{\text {th }}$ percentile of the significance of all detected QTL above using each approach. We then performed GWAS mapping on all 23,349 traits using LOCO and INBRED approaches and identified eQTL that passed their respective 5\% FDR thresholds. Overall, we detected 10,291 eQTL for 5668 transcript expression traits, with 4899 eQTL for 4254 traits in LOCO, 5392 eQTL for 4700 traits in INBRED (Supplementary Table 2). Fine-mappings were further performed on each eQTL using Nemascan.

We classified eQTL as local (within 2 Mb surrounding the transcript) or distant (non-local). For distant eQTL located outside of the common hyper-divergent regions among the 207 strains ${ }^{19,25}$, we identified hotspot regions enriched with distant eQTL for LOCO and INBRED results, respectively ${ }^{19}$.

The genomic region harboring the eri-6/7 locus at 21 cM on chromosome I was identified as a distant eQTL hotspot in both LOCO and INBRED in this study and in our previous study ${ }^{19}$.

DNA alignment

We aligned each of the 17 de novo PacBio assemblies of wild C. elegans strains to the N2 reference genome using MUMmer (v3.1) ${ }^{49}$ and extracted sequences that were aligned to the N2 eri-6/7 locus using BEDTools (v2.29.2) ${ }^{50}$. Then, we performed pairwise alignments among these sequences and to the eri-6/7 N2 reference sequence using Unipro UGENE (v.47.0) ${ }^{51}$. Large insertions ($>50 \mathrm{bp}$) in the wild strains to the reference were blasted in WormBase ${ }^{22}$ to identify potential transposon origins.

Scan for Polinton and TIRs in genome assemblies

We obtained the amino acid sequences of pPoIB1 and INT in C. briggsae Polinton-1 (WBTransposon00000832) ${ }^{22}$ using ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder/) and the 744 bp DNA sequence for the TIRs from 10,302,516 to 10,303,259 bp on chromosome I in the C. elegans (N2) reference genome. We searched for the Polinton and TIRs sequences in the 21 genome assemblies using tblastn and blastn in BLAST (v2.14.0) ${ }^{52}$, respectively. We filtered the results by a maximum e-value of 0.001 and a minimum bitscore of 50^{32}. We merged pPoIB1, INT, and TIR hits within $4 \mathrm{~kb}, 2 \mathrm{~kb}$, and 2 kb , respectively, with consideration of strandedness. Polinton insertions were identified by the presence of both pPoIB1 and INT within 20 kb .

We also searched for sosi-1 outside of the eri-6/7 locus in the genome assemblies using DNA sequence of sosi-1 in the reference and found an additional copy in the strains JU2526, ECA396, XZ1516, and JU1400, and two additional copies in the strains ECA36 and QX1794 in their PacBio genome assemblies. Genomic locations surrounding these additional copies in the six strains correspond to $\sim 0.31 \mathrm{Mb}$ on the chromosome III in the reference N 2 genome. The additional copies of sosi-1 outside the eri-6/7 locus in the six strains share most alleles compared to the sosi-1 within the eri-6/7 locus.

Identification of SVs using short-read WGS data

We extracted information of split reads mapped to the reference eri-6/7 locus (l: 4,451,194 4,469,460 bp) and with a minimum quality score equal of 20 from the BAM files of the 550 wild C. elegans strains. 1): To identify potential inversions in the eri-6/7 locus, we first selected split reads with both the primary and chimeric alignments mapped to this region but to different strands. We assigned the primary and chimeric alignment positions of each split read into 200bp bins and required at least four reads that had the primary and chimeric alignments in the same pair of bins for a relatively reliable inversion event in each strain. We focused on inversions spanning at least three bins and found in more than 10 strains. 2): To identify potential sites of Polinton remnants, we selected the split reads outside of the direct repeats at the eri-6/7 locus and with the chimeric alignment mapped to Polinton (Polinton-1_CB, WBTransposon00000738) and its surrounding Polinton_CE_TIR on chromosome I from 10,302,516 to 10,319,657 bp. At least two reads were required. The primary alignment of these reads indicated the potential sites of Polinton remnants in the eri-6/7 locus in wild strains.

Furthermore, we counted the coverage per bp in the eri-6/7 locus for each short-read WGS BAM file using BEDTools (v2.29.2) ${ }^{50}$. We calculated the percentage of the coverage at each bp to the mean coverage within the eri-6/7 locus in each strain. Then, we performed a sliding window analysis with a 200-bp window size and a 100-bp step size for each strain. A 173-bp tandem repeat region from $4,465,414$ to $4,465,586 \mathrm{bp}$ on chromosome I was masked in the results.

To identify additional copies and haplotypes of sosi-1 among the 550 wild strains, we focused on 93 variants of the 101 SNVs tagged "high heterozygosity" within the sosi-1 region in the soft-filtered isotype VCF (CaeNDR, 20220216 release) ${ }^{34}$. We used the following threshold to define sosi-1 haplotype and copy numbers among the 550 strains: 449 strains show homozygous reference alleles at all 93 SNVs (except one strain at 92 SNVs), indicating they only have the reference haplotype sosi-1; 80 strains show heterozygous alleles at more than 60 SNVs, indicating two copies of sosi-1 with divergent haplotypes; three strains have homozygous alternative alleles at more than 90 SNVs, indicating missing of the reference sosi-1 in the eri-6/7 locus and the existence of the alternative sosi-1 copy; 11 strains show undetected genotype at 60 to 93 SNVs and extreme low coverages in sosi-1 (Extended Data Fig. 7d), indicating they may lack sosi-1 in the genomes; the sosi-1 haplotype and copy number of the remaining seven strains are unclear as they have numbers of homozygous and homozygous alleles in between the above threshold (Supplementary Table 4).

Genetic relatedness

Genetic variation data across the genome among the 550 C. elegans strains were extracted from the hard-filtered VCF above using BCFtools (v.1.9) ${ }^{53}$. These variants were pruned to the 1,199,944 biallelic SNVs without missing genotypes. We converted this pruned VCF file to a PHYLIP file using the vcf2phylip.py script ${ }^{54}$. The unrooted neighbor-joining tree was made using the R packages phangorn (v2.5.5) ${ }^{55}$ and ggtree (v1.14.6) ${ }^{56}$.

A second PHYLIP file was built by the same method above but only with 95 SNVs within the eri-6/7 locus. A haplotype network was generated using this PHYLIP file and SplitsTree CE (v6.1.16) ${ }^{57}$.

Acknowledgements

This research was supported by the National Science Foundation (1764421) and Simons Foundation (597491) Research Center for Mathematics of Complex Biological Systems and a Human Frontiers Research Program grant (RGP0001/2019) to E.C.A. G.Z. is supported by a grant from the Fondation pour la Recherche Médicale (ARF202209015859). M.-A.F. is supported by the Centre National de la Recherche Scientifique and a grant from the Agence Nationale de la Recherche (ANR-19-CE12-0025). We like to thank Emily Koury for the efforts in CRISPR-Cas9 genome editing. We like to thank Nicolas D. Moya for suggestions on useful bioinformatic tools. We would like to thank members of the Andersen Lab for helpful comments on the manuscript. We also like to thank CaeNDR (supported by NSF Capacity Grant 2224885 to E.C.A.) and WormBase for which these analyses would not have been possible.

Author contributions

G.Z., M.-A.F., and E.C.A. conceived of the study. G.Z. analyzed the data. G.Z., M.-A.F., and E.C.A. wrote the manuscript.

Competing interests

The authors declare no competing interests.

Data and code availability

The datasets and code for generating all figures can be found at https://github.com/AndersenLab/Ce-eri-67

Supplementary information

Description of Additional Supplementary Files
Supplementary Table 1
23,349 GWAS gene expression traits
Supplementary Table 2
eQTL summary
Supplementary Table 3
Sequences alignment of Polinton_CE_TIR and the direct repeat

Supplementary Table 4

Structural variants at the eri-6/7 locus of 550 strains
Supplementary Table 5
Statistical pairwise comparison results in Fig. 4a, c

References

1. McClintock, B. The origin and behavior of mutable loci in maize. Proceedings of the National Academy of Sciences 36, 344-355 (1950).
2. Gray, Y. H. It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. Trends Genet. 16, 461-468 (2000).
3. Bourque, G. et al. Ten things you should know about transposable elements. Genome Biol. 19, 199 (2018).
4. Gilbert, C. \& Feschotte, C. Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. Curr. Opin. Genet. Dev. 49, 15-24 (2018).
5. Widen, S. A. et al. Virus-like transposons cross the species barrier and drive the evolution of genetic incompatibilities. Science 380, eade0705 (2023).
6. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089-1103 (2007).
7. Ito, H. Small RNAs and transposon silencing in plants. Dev. Growth Differ. 54, 100-107 (2012).
8. Deniz, Ö., Frost, J. M. \& Branco, M. R. Regulation of transposable elements by DNA modifications. Nat. Rev. Genet. 20, 417-431 (2019).
9. Fischer, S. E. J. \& Ruvkun, G. Caenorhabditis elegans ADAR editing and the ERI6/7/MOV10 RNAi pathway silence endogenous viral elements and LTR retrotransposons. Proc. Natl. Acad. Sci. U. S. A. 117, 5987-5996 (2020).
10. Rebollo, R., Romanish, M. T. \& Mager, D. L. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu. Rev. Genet. 46, 21-42 (2012).
11. Gao, D., Jiang, N., Wing, R. A., Jiang, J. \& Jackson, S. A. Transposons play an important role in the evolution and diversification of centromeres among closely related species. Front. Plant Sci. 6, 216 (2015).
12. Chuong, E. B., Elde, N. C. \& Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71-86 (2017).
13. Fischer, S. E. J. et al. The ERI-6/7 helicase acts at the first stage of an siRNA amplification pathway that targets recent gene duplications. PLoS Genet. 7, e1002369 (2011).
14. Kanzaki, N. et al. Biology and genome of a newly discovered sibling species of Caenorhabditis elegans. Nat. Commun. 9, 3216 (2018).
15. Lee, R. C., Hammell, C. M. \& Ambros, V. Interacting endogenous and exogenous RNAi pathways in Caenorhabditis elegans. RNA 12, 589-597 (2006).
16. Fischer, S. E. J., Butler, M. D., Pan, Q. \& Ruvkun, G. Trans-splicing in C. elegans
generates the negative RNAi regulator ERI-6/7. Nature 455, 491-496 (2008).
17. Rogers, A. K. \& Phillips, C. M. A Small-RNA-Mediated Feedback Loop Maintains Proper Levels of 22G-RNAs in C. elegans. Cell Rep. 33, 108279 (2020).
18. Albert, F. W. \& Kruglyak, L. The role of regulatory variation in complex traits and disease. Nat. Rev. Genet. 16, 197-212 (2015).
19. Zhang, G., Roberto, N. M., Lee, D., Hahnel, S. R. \& Andersen, E. C. The impact of specieswide gene expression variation on Caenorhabditis elegans complex traits. Nat. Commun. 13, 1-13 (2022).
20. Kapitonov, V. V. \& Jurka, J. Self-synthesizing DNA transposons in eukaryotes. Proc. Nat/. Acad. Sci. U. S. A. 103, 4540-4545 (2006).
21. Pritham, E. J., Putliwala, T. \& Feschotte, C. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390, 3-17 (2007).
22. Harris, T. W. et al. WormBase: a modern Model Organism Information Resource. Nucleic Acids Res. 48, D762-D767 (2020).
23. Kim, C. et al. Long-read sequencing reveals intra-species tolerance of substantial structural variations and new subtelomere formation in C. elegans. Genome Res. 29, 1023-1035 (2019).
24. Bubrig, L. T., Sutton, J. M. \& Fierst, J. L. Caenorhabditis elegans dauers vary recovery in response to bacteria from natural habitat. Ecol. Evol. 10, 9886-9895 (2020).
25. Lee, D. et al. Balancing selection maintains hyper-divergent haplotypes in Caenorhabditis elegans. Nat Ecol Evol 1-14 (2021).
26. Lee, B. Y., Kim, J. \& Lee, J. Long-read sequencing infers a mechanism for copy number variation of template for alternative lengthening of telomeres in a wild C. elegans strain. MicroPubl Biol 2022, (2022).
27. Stevens, L. et al. Chromosome-Level Reference Genomes for Two Strains of Caenorhabditis briggsae: An Improved Platform for Comparative Genomics. Genome Biol. Evol. 14, (2022).
28. Crombie, T. A. et al. Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity and admixture with global populations. Elife 8, e50465 (2019).
29. Crombie, T. A. et al. Local adaptation and spatiotemporal patterns of genetic diversity revealed by repeated sampling of Caenorhabditis elegans across the Hawaiian Islands. Mol. Ecol. 31, 2327-2347 (2022).
30. Andersen, E. C. et al. Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat. Genet. 44, 285-290 (2012).
31. Li, W. \& Shaw, J. E. A variant Tc4 transposable element in the nematode C. elegans could encode a novel protein. Nucleic Acids Res. 21, 59-67 (1993).
32. Jeong, D.-E. et al. DNA polymerase diversity reveals multiple incursions of Polintons during nematode evolution. bioRxiv 2023.08.22.554363 (2023)
doi:10.1101/2023.08.22.554363.
33. Sayers, E. W. et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 50, D20-D26 (2022).
34. Cook, D. E., Zdraljevic, S., Roberts, J. P. \& Andersen, E. C. CeNDR, the Caenorhabditis elegans natural diversity resource. Nucleic Acids Res. 45, D650-D657 (2017).
35. Duchaine, T. F. et al. Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. Cell 124, 343-354 (2006).
36. Claycomb, J. M. et al. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 139, 123-134 (2009).
37. Gu, W. et al. Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance
in the C. elegans germline. Mol. Cell 36, 231-244 (2009).
38. Conine, C. C. et al. Argonautes ALG-3 and ALG-4 are required for spermatogenesisspecific 26G-RNAs and thermotolerant sperm in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 107, 3588-3593 (2010).
39. Tijsterman, M., Okihara, K. L., Thijssen, K. \& Plasterk, R. H. A. PPW-1, a PAZ/PIWI protein required for efficient germline RNAi, is defective in a natural isolate of C . elegans. Curr. Biol. 12, 1535-1540 (2002).
40. Pollard, D. A. \& Rockman, M. V. Resistance to germline RNA interference in a Caenorhabditis elegans wild isolate exhibits complexity and nonadditivity. G3 3, 941-947 (2013).
41. Ashe, A. et al. A deletion polymorphism in the Caenorhabditis elegans RIG-I homolog disables viral RNA dicing and antiviral immunity. Elife 2, e00994 (2013).
42. Chou, H. T. et al. Diversification of small RNA pathways underlies germline RNAi incompetence in wild C. elegans strains. Genetics (2023) doi:10.1093/genetics/iyad191.
43. Guan, Y. et al. The MOV10 RNA helicase is a dosage-dependent host restriction factor for LINE1 retrotransposition in mice. PLoS Genet. 19, e1010566 (2023).
44. Newman, M. A. et al. The surveillance of pre-mRNA splicing is an early step in C. elegans RNAi of endogenous genes. Genes Dev. 32, 670-681 (2018).
45. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).
46. Widmayer, S. J., Evans, K. S., Zdraljevic, S. \& Andersen, E. C. Evaluating the power and limitations of genome-wide association studies in Caenorhabditis elegans. G3 12, (2022).
47. Yang, J., Lee, S. H., Goddard, M. E. \& Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76-82 (2011).
48. Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-scale
data. Nat. Genet. 51, 1749-1755 (2019).
49. Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).
50. Quinlan, A. R. \& Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842 (2010).
51. Okonechnikov, K., Golosova, O., Fursov, M. \& UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28, 1166-1167 (2012).
52. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
53. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987-2993 (2011).
54. Ortiz, E. M. vcf2phylip v2.0: convert a VCF matrix into several matrix formats for phylogenetic analysis. (2019). doi:10.5281/zenodo.2540861.
55. Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592-593 (2011).
56. Yu, G., Smith, D. K., Zhu, H., Guan, Y. \& Lam, T. T. Ggtree : An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28-36 (2017).
57. Huson, D. H. \& Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267 (2006).

Extended data figures and tables

Transposon-mediated genic rearrangements underlie variation in small RNA pathways

Gaotian Zhang ${ }^{1}$, Marie-Anne Félix ${ }^{1}$, and Erik C. Andersen ${ }^{2}$

1. Institut de Biologie de l'École Normale Supérieure, Paris, Île-de-France, France
2. Biology Department, Johns Hopkins University, Baltimore, MD, USA

Transcript	Gene	Genomic position	Biotype	eQTL method	Distant eQTL peak position	cM bin on Chr I	Candidate variants in eri-6	Known targets of ERI-6/7 dependent siRNAs	With known orthologs in other nematodes
C36A4.11.1	C36A4.11	III: 3840579-3841248	protein-coding	LOCO	1:4696683	21	4464670		No
F52D2.5.1	F52D2.5	X: 1973511-1974799	protein-coding	LOCO	I:4443624	21	4464670		No
F56D6.16	F56D6.16	IV: 3898478-3899806	pseudogene	INBRED, LOCO	$\begin{aligned} & \mathrm{l}: 4316016, \\ & \mathrm{l}: 4434616 \end{aligned}$	$\begin{aligned} & 20.5, \\ & 21 \end{aligned}$	4464670		No
F56D6.17	F56D6.17	IV: 3895963-3897997	pseudogene	INBRED, LOCO	$\begin{aligned} & \mathrm{I}: 4443624, \\ & \mathrm{I}: 4443624 \end{aligned}$	$\begin{aligned} & 21, \\ & 21 \end{aligned}$	4464670		No
K02E2.6.1	K02E2.6	V: 20380561-20382036	protein-coding	$\begin{aligned} & \text { INBRED, } \\ & \text { LOCO } \end{aligned}$	$\begin{aligned} & \text { l:4434616, } \\ & \text { l:4434616 } \end{aligned}$	$\begin{aligned} & 21, \\ & 21 \end{aligned}$	4464670	Yes	Yes
W04A4.2.1	W04A4.2	I:13682137-13684547	protein-coding	$\begin{aligned} & \text { INBRED, } \\ & \text { IOCO } \end{aligned}$	$\begin{aligned} & \text { I:4443624, } \\ & \text { I:4443624 } \end{aligned}$	$\begin{aligned} & 21, \\ & 21 \end{aligned}$	4464670		Yes
W04B5.1	W04B5.1	III: 2428204-2429430	pseudogene	LOCO	1:4370151	20.5	4464670		No
Y105C5A. 14	Y105C5A. 14	IV:15646970-15648298	pseudogene	INBRED, LOCO	$\begin{aligned} & \mathrm{l}: 4443624, \\ & \mathrm{l}: 4443624 \end{aligned}$	$\begin{array}{\|l\|l} 21, \\ 21 \end{array}$	4464670	Yes	No
Y105C5A. 25	Y105C5A. 25	IV:15860221-15861442	pseudogene	$\begin{aligned} & \text { INBRED, } \\ & \text { LOCO } \end{aligned}$	$\begin{aligned} & \text { I:4446767, } \\ & \text { l:4446767 } \end{aligned}$	$\begin{aligned} & 21, \\ & 21, \end{aligned}$	4464670	Yes	No
Y59H11AR. 6	Y59H11AR. 6	IV: 8597762-8598727	pseudogene	INBRED, LOCO	$\begin{aligned} & \mathrm{I}: 4443624, \\ & \mathrm{I}: 4443624 \end{aligned}$	$\begin{aligned} & 21, \\ & 21 \end{aligned}$	4464670	Yes	No
Y82E9BL.18.1	Y82E9BL. 18	III: 1328590-1331066	protein-coding	INBRED, LOCO	$\begin{aligned} & \mathrm{l}: 4316016, \\ & \mathrm{l}: 4316016 \end{aligned}$	$\begin{aligned} & 20.5, \\ & 20.5 \end{aligned}$	4464670		Yes
Y82E9BL.18.2	Y82E9BL. 18	III: 1326791-1331066	protein-coding	$\begin{aligned} & \text { INBRED, } \\ & \text { IOCO } \end{aligned}$	$\begin{aligned} & \mathrm{l}: 4434616, \\ & \mathrm{l}: 4434616 \end{aligned}$	21,21	4464670		Yes
ZK795.6	ZK795.6	IV: 12555311-12556482	pseudogene	$\begin{aligned} & \text { INBRED, } \\ & \text { LOCO } \end{aligned}$	$\begin{aligned} & \text { l:4443624, } \\ & \text { I:4443624 } \end{aligned}$	21,21	4464670		No

Extended Data Table 1 | Transcript expression traits associated with eri-6.

In Fig. 1e, we showed Manhattan plots for the ten traits identified with distant eQTL using both INBRED and LOCO methods. In Extended Data Fig. 1c, we showed the phenotype by genotype plots for all of ten gene expression traits at the top candidate variant. Because of the negative correlation in expression between the two transcripts Y82E9BL.18.1 and Y82E9BL.18.2 of the gene Y82E9BL.18, only one of these transcripts was depicted in Fig. 4c for clarity purposes.

Extended Data Fig. 1 | Expression QTL maps and expression variation of eri-6 related transcripts. a, Expression QTL maps using LOCO and INBRED methods. Each point represents an eQTL with its position on the x-axis and the genomic position of the transcript on the y-axis. Local and distant eQTL are colored gold and purple, respectively. Red points represent distant eQTL associated with the eri-6/7 locus. b, Tukey box plots showing expression ($-\log _{2}$ (normalized TPM +0.5) variation of ten transcripts at the eri-6/7 locus. c, Tukey box plots showing expression variation of 13 transcripts across the genome between strains with the reference (REF) or alternative (ALT) alleles at the SNV of 4,464,670 bp on chromosome I. b,c, Each point represents a strain. Box edges denote the 25th and 75th quantiles of the data; and whiskers represent $1.5 \times$ the interquartile range.

Genotype at I:4464670 $\square_{\text {REF }}^{\square}$ ALT

Extended Data Fig. 2 | The SNV candidate cannot explain expression variation in eri-6. Expression variation of eri-6[c.1,e.1,f.1] among four wild C. elegans strains (JU2141, JU3144, JU2106, JU642) and their eight mutant strains at eri-6[e] (I: 4,464,670) using CRISPR-Cas9mediated genome editing as previously described ${ }^{1-3}$. The guide RNAs crECA163 (GCTGTGCCACGATCGGAGTA) (Synthego, CA, USA) was used for the editing. The homologous recombination templates crECA162 (tgtcatttgatcccgctcggcattttcaacgatgacgaaaagtcttctaacatctcgaatTaccttactccgatcgtggcacagctc aatagcctcaaagagctgaaactgaaagtagccg) and
crECA164 (tgtcatttgatcccgctcggcattttcaacgatgacgaaaagtcttctaacatctcgaatGaccttactccgatcgtggcacagctc aatagcctcaaagagctgaaactgaaagtagccg) (IDT, IL, USA) were used for wild strains with the reference (REF) and alternative (ALT) alleles at the target site, respectively. Genotypes of F2 progeny were detected with primers oECA1989 (GGTGGTGGCAGCGCATCTAGTC) and oECA1990 (GCTCCCCGAATGTAGCCACCGA) using PCR and Sanger sequencing. Edit1 and Edit2 are two independent edits in each of the four backgrounds. Each point represents a biological replicate. Transcriptomes in synchronized young adult stage animals of each replicate were measured by RNA sequencing and quantified as previously described ${ }^{4}$ (also see details in Methods).

Extended Data Fig. 3 I Structural variation in the eri-6/7 region. a, Large deletions ($\geq 38 \mathrm{bp}$), insertions ($\geq 42 \mathrm{bp}$), and inversions of 17 wild strains with PacBio assemblies to the reference N2 genome in the eri-6/7 region are represented by red rectangles, dark blue triangles, and yellow rectangles, respectively. Sizes of the insertions are indicated in bp. Exons of eri-6/7 and sosi-1 are plotted as rectangles on top and are colored magenta and light blue for plus and minus coding strands, respectively. Nine strains (DL226, EG4725, JU310, JU1395, JU2600, MY2147, MY2693, NIC2, QX1794) with highly identical sequences in this region were represented together. The only local structural difference in these nine strains as compared to N2 is a shared 87-bp insertion upstream of eri-6[e]. b, Ranges of the ~ 930 bp direct repeats ${ }^{5}$ and the ~ 715 bp parts with Polinton origins are indicated as blue rectangles, respectively (Supplementary Table 4). Dashed vertical gray and black lines indicate outside boundaries of direct repeats and break points of inversions (defined by comparison between the strains XZ1516 and the reference N2). c, Predicted transcription factor (TF) binding sites ${ }^{6}$ within the repeat regions are indicated as green rectangles. d, Number of reads spanning 20 bp surrounding each boundary/break-point position was counted and percent of this count normalized by the mean coverage per bp in the eri-6/7 locus for each strain was plotted on the y-axis against the structural variation on the x-axis. High counts of reads spanning the inversion breakpoints indicate Watson ERI-6 exons and direct repeats as in the reference genome, except for the CB4856-like strains.

Extended Data Fig. $4 \mid$ Alignment of Polinton and sosi-1 fragments to the reference.
Sequence alignments of fragments ("ss1-6", "tir1-5", and "plt1-4") indicated in Fig. 2 to sosi-1 (a) and the largest Polinton remnant (Polinton-1_CB, WBTransposon00000738, as a red arrow on top) (b) in the reference N2 genome are shown. Positions of the retroviral-like-element integrase (INT) and the protein-primed DNA polymerase B genes (pPolB1) are indicated as orange and pink arrows, respectively. Note that sequences of segments CB4856-tir2, tir3, and ECA396-tir4 can also be aligned to the terminal inverted repeat (TIR, blue arrows) on the left.

- INV sosi-1

Extended Data Fig. 5 | Genetic relatedness of 550 wild C. elegans strains. Genetic relatedness tree using 1,199,944 biallelic SNVs throughout the genome. Recombination occurs within the species so this tree only represents overall relatedness. Each point represents a strain and is colored by its structural variation in the eri-6/7 region. The 19 strains clustered with ECA396 in Fig. 3 are also clustered with ECA396 on the same branch.

Extended Data Fig. 6 | Presence of TIRs and Polintons in C. elegans and C. briggsae strains. Polinton insertions were identified in 18 C. elegans strains (a) and three C. briggsae strains (b) by requiring the presence of both pPoIB1 (pink arrows) and INT (orange arrows) within 20 kb . Blue arrows represent TIRs. Red arrows represent pPolB that was found close to TIRs but without nearby INT. Direction of arrows represents orientations. Horizontal lines indicate different copies in the genomes, with the blue lines highlighting the copies in the eri-6/7 locus. All the identified Polinton insertions and TIRs were plotted.
 c

Extended Data Fig. 7 | Inversions and other structural variants within the eri-6/7 locus. a, Inversions and Polinton-1_CB insertions within the eri-6/7 locus are represented by lines that connect positions of the primary and chimeric alignments of split reads (See Methods). b, Sliding windows on normalized coverages per bp with a 200-kb window size and a 100-bp step size in the eri-6/7 locus of 550 strains. c,d Mean coverages in each strain within the two direct repeats (c) and four other regions (d) indicated in \mathbf{b} were shown. Each line (b) / point (c,d) represents one strain and is colored by structural variants indicated in b. Extreme low coverages indicate deletions and extreme high coverages indicate duplications compared to the reference genome.

Extended Data Fig. 8| Geographical distribution of wild C. elegans. Geographical distribution of 550 strains worldwide (a) and detailed on the Hawaiian Islands (b). Each point represents a strain and is colored by its structural variation in the eri-6/7 region.

References

1. Kim, H. et al. A co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans. Genetics 197, 1069-1080 (2014).
2. Paix, A., Folkmann, A., Rasoloson, D. \& Seydoux, G. High Efficiency, Homology-Directed Genome Editing in Caenorhabditis elegans Using CRISPR-Cas9 Ribonucleoprotein Complexes. Genetics 201, 47-54 (2015).
3. Evans, K. S. et al. Natural variation in the sequestosome-related gene, sqst-5, underlies zinc homeostasis in Caenorhabditis elegans. PLoS Genet. 16, e1008986 (2020).
4. Zhang, G., Roberto, N. M., Lee, D., Hahnel, S. R. \& Andersen, E. C. The impact of specieswide gene expression variation on Caenorhabditis elegans complex traits. Nat. Commun. 13, 1-13 (2022).
5. Fischer, S. E. J., Butler, M. D., Pan, Q. \& Ruvkun, G. Trans-splicing in C. elegans generates the negative RNAi regulator ERI-6/7. Nature 455, 491-496 (2008).
6. Harris, T. W. et al. WormBase: a modern Model Organism Information Resource. Nucleic Acids Res. 48, D762-D767 (2020).
